期刊文献+
共找到2,084篇文章
< 1 2 105 >
每页显示 20 50 100
State-of-the-art on the anchorage performance of rock bolts subjected to shear load 被引量:2
1
作者 Yu Chen Haodong Xiao 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第1期1-30,共30页
Rock bolts are extensively utilized in underground engineering as a means of offering support and stability to rock masses in tunnels,mines,and other underground structures.In environments of high ground stress,faults... Rock bolts are extensively utilized in underground engineering as a means of offering support and stability to rock masses in tunnels,mines,and other underground structures.In environments of high ground stress,faults or weak zones can frequently arise in rock formations,presenting a significant challenge for engineering and potentially leading to underground engineering collapse.Rock bolts serve as a crucial structural element for the transmission of tensile stress and are capable of withstanding shear loads to prevent sliding of weak zones within rock mass.Therefore,a complete understanding of the behavior of rock bolts subjected to shear loads is essential.This paper presents a state-of-the-art review of the research progress of rock bolts subjected to shear load in three categories:experiment,numerical simulation,and analytical model.The review focuses on the research studies and developments in this area since the 1970s,providing a comprehensive overview of numerous factors that influence the anchorage performance of rock bolts.These factors include the diameter and angle of the rock bolt installation,rock strength,grouting material,bolt material,borehole diameter,rock bolt preload,normal stress,joint surface roughness and joint expansion angle.The paper reviews the improvement of mechanical parameter setting in numerical simulation of rock bolt shear.Furthermore,it delves into the optimization of the analytical model concerning rock bolt shear theory,approached from the perspectives of both Elastic foundation beam theory coupled with Elastoplasticity theory and Structural mechanic methods.The significance of this review lies in its ability to provide insights into the mechanical behavior of rock bolts.The paper also highlights the limitations of current research and guidelines for further research of rock bolts. 展开更多
关键词 rock bolt Shear load Shear test Numerical simulation Analytical model
下载PDF
Failure characterization of fully grouted rock bolts under triaxial testing 被引量:1
2
作者 Hadi Nourizadeh Ali Mirzaghorbanali +3 位作者 Mehdi Serati Elamin Mutaz Kevin McDougall Naj Aziz 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期778-789,共12页
Confining stresses serve as a pivotal determinant in shaping the behavior of grouted rock bolts.Nonetheless,prior investigations have oversimplified the three-dimensional stress state,primarily assuming hydrostatic st... Confining stresses serve as a pivotal determinant in shaping the behavior of grouted rock bolts.Nonetheless,prior investigations have oversimplified the three-dimensional stress state,primarily assuming hydrostatic stress conditions.Under these conditions,it is assumed that the intermediate principal stress(σ_(2))equals the minimum principal stress(σ_(3)).This assumption overlooks the potential variations in magnitudes of in situ stress conditions along all three directions near an underground opening where a rock bolt is installed.In this study,a series of push tests was meticulously conducted under triaxial conditions.These tests involved applying non-uniform confining stresses(σ_(2)≠σ_(3))to cubic specimens,aiming to unveil the previously overlooked influence of intermediate principal stresses on the strength properties of rock bolts.The results show that as the confining stresses increase from zero to higher levels,the pre-failure behavior changes from linear to nonlinear forms,resulting in an increase in initial stiffness from 2.08 kN/mm to 32.51 kN/mm.The load-displacement curves further illuminate distinct post-failure behavior at elevated levels of confining stresses,characterized by enhanced stiffness.Notably,the peak load capacity ranged from 27.9 kN to 46.5 kN as confining stresses advanced from σ_(2)=σ_(3)=0 to σ_(2)=20 MPa and σ_(3)=10 MPa.Additionally,the outcomes highlight an influence of confining stress on the lateral deformation of samples.Lower levels of confinement prompt overall dilation in lateral deformation,while higher confinements maintain a state of shrinkage.Furthermore,diverse failure modes have been identified,intricately tied to the arrangement of confining stresses.Lower confinements tend to induce a splitting mode of failure,whereas higher loads bring about a shift towards a pure interfacial shear-off and shear-crushed failure mechanism. 展开更多
关键词 rock bolts bolt-grout interface Bond strength Push test Triaxial tests
下载PDF
Mechanical behavior and failure mechanisms of rock bolts subjected to static-dynamic loads 被引量:1
3
作者 Hongpu Kang Guiyang Yuan +4 位作者 Linpo Si Fuqiang Gao Jinfu Lou Jinghe Yang Shuangyong Dong 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第3期281-288,共8页
This study explores the effects of dynamic and static loading on rock bolt performance a key factor in maintaining the structural safety of coal mine roadways susceptible to coal bursts.Employing a housemade load fram... This study explores the effects of dynamic and static loading on rock bolt performance a key factor in maintaining the structural safety of coal mine roadways susceptible to coal bursts.Employing a housemade load frame to simulate various failure scenarios,pretension-impact-pull tests on rock bolts were conducted to scrutinize their dynamic responses under varied static load conditions and their failure traits under combined loads.The experimental results denote that with increased impact energy,maximum and average impact loads on rock bolts escalate significantly under pretension,initiating plastic deformation beyond a certain threshold.Despite minor reductions in the yield load due to impactinduced damage,pretension aids in constraining post-impact deformation rate and fluctuation degree of rock bolts.Moreover,impact-induced plastic deformation causes internal microstructure dislocation,fortifying the stiffness of the rock bolt support system.The magnitude of this fortification is directly related to the plastic deformation induced by the impact.These findings provide crucial guidance for designing rock bolt support in coal mine roadway excavation,emphasizing the necessity to consider both static and dynamic loads for improved safety and efficiency. 展开更多
关键词 rock bolt PRETENSION Static and dynamic load IMPACT
下载PDF
Evaluation of load transfer mechanism under axial loads in a novel coupler of dual height rock bolts 被引量:2
4
作者 Ranjan Kumar Prabhat Kumar Mandal +1 位作者 Ashish Narayan Arka Jyoti Das 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第2期225-232,共8页
The effective reinforcement of two or more overlying layers of mine openings in a single installation is usually done by coupling of two standard rock bolts mainly during the extraction of medium-thick coal seams.Howe... The effective reinforcement of two or more overlying layers of mine openings in a single installation is usually done by coupling of two standard rock bolts mainly during the extraction of medium-thick coal seams.However,field observations show that the couplers of multiple bolts often degrade or break mostly at their connections.These types of failures can be avoided by strengthening the couplers of such multi-bolts assemblies.To achieve this,a novel threaded coupler system with an expansion shell was suggested in this paper.The newly designed coupler consists of a threaded tapered-plug-cumconnector with an expansion shell for connecting and tightening two standard rock bolts.An analytical model for evaluating the load distribution along the coupler subject to axial load was derived.Numerical analysis was performed to analyse the load transfer,deformation,and strains across the coupler including the factor of safety for the bolt-coupler-resin and bolt-coupler-expansion shell.The results validated the analytical model of the proposed coupler design,which provides better anchorage near the interface of the host rock mass.Thus,the developed coupler design would reduce the failures of the proposed coupler and stabilize laminated roof strata above the medium-thick coal seams in underground mines. 展开更多
关键词 Roof rock reinforcement Dual height rock bolts rock bolt coupler Expansion shell Underground mining Laminated roof strata
下载PDF
Optimization of the fully grouted rock bolts for load transfer enhancement 被引量:9
5
作者 Ghadimi Mostafa Shahriar Korosh Jalalifar Hossein 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第5期707-712,共6页
The purpose of this study is to investigate the role of bolt profile configuration in load transfer capacity between the bolt and grout.Therefore,five types of rock bolts are used with different profiles.The rock bolt... The purpose of this study is to investigate the role of bolt profile configuration in load transfer capacity between the bolt and grout.Therefore,five types of rock bolts are used with different profiles.The rock bolts are modeled by ANSYS software.Models show that profile rock bolt T_3 and T_ with load capacity 180 and 195 kN in the jointed rocks,are the optimum profiles.Finally,the performances of the selected profiles are examined in Tabas Coal Mine by FLAC software.There is good subscription between the results of numerical modeling and instrumentation reading such as tells tale,sonic extensometer and strain gauge rock bolt.According to the finding of this study,the proposed pattern of rock bolts,on 7 + 6 patterns per meter with 2 flexi bolt(4 m) for support gate road. 展开更多
关键词 Fully grouted rock bolts Numerical modeling Load transfer bolt profile
下载PDF
Utilizing a novel fiber optic technology to capture the axial responses of fully grouted rock bolts 被引量:5
6
作者 Nicholas Vlachopoulos Daniel Cruz Bradley Forbes 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2018年第2期222-235,共14页
Rock bolts are one of the primary support systems utilized in underground excavations within the civil and mining engineering industries. Rock bolts support the weakened rock mass adjacent to the opening of an excavat... Rock bolts are one of the primary support systems utilized in underground excavations within the civil and mining engineering industries. Rock bolts support the weakened rock mass adjacent to the opening of an excavation by fastening to the more stable, undisturbed formations further from the excavation. The overall response of such a support element has been determined under varying loading conditions in the laboratory and in situ experiments in the past four decades; however, due to the limitations with conventional monitoring methods of capturing strain, there still exists a gap in knowledge associated with an understanding of the geomechanical responses of rock bolts at the microscale. In this paper, we try to address this current gap in scientific knowledge by utilizing a newly developed distributed optical strain sensing(DOS) technology that provides an exceptional spatial resolution of 0.65 mm to capture the strain along the rock bolt. This DOS technology utilizes Rayleigh optical frequency domain reflectometry(ROFDR) which provides unprecedented insight into various mechanisms associated with axially loaded rebar specimens of different embedment lengths, grouting materials, borehole annulus conditions, and borehole diameters. The embedment length of the specimens was found to be the factor that significantly affected the loading of the rebar. The critical embedment length for the fully grouted rock bolts(FGRBs) was systematically determined to be430 mm. The results herein highlight the effects of the variation of these individual parameters on the geomechanical responses FGRBs. 展开更多
关键词 Fiber optic technology Fully grouted rock bolts Load transfer Stress distribution
下载PDF
Effect of pre-tensioned rock bolts on stress redistribution around a roadway—insight from numerical modeling 被引量:12
7
作者 GAO Fu-qiang KANG Hong-pu 《Journal of China University of Mining and Technology》 EI 2008年第4期509-515,共7页
The importance of the pre-tensioned force of rock bolts has been recognized by more and more researchers. To investi- gate the effect of pre-tensioned rock bolts on stress redistribution around roadways, a numerical a... The importance of the pre-tensioned force of rock bolts has been recognized by more and more researchers. To investi- gate the effect of pre-tensioned rock bolts on stress redistribution around roadways, a numerical analysis was carried out using FLAC3D and a special post-process methodology, using surfer, is proposed to process the numerical simulation results. The results indicate that pre-tensioned rock bolts have a significant effect on stress redistribution around a roadway. In the roof, pre-tensioned rock bolts greatly increase vertical stress; as a result, the strength of the rock mass increased significantly which results in a greater capacity of bearing a large horizontal stress. The horizontal stress decreases in the upper section of the roof, indicating that pre-tensioned rock bolts significantly reduce the coefficient and the size of the region concentration of horizontal stress. At the lat- eral side, pre-tensioned rock bolts greatly increase the horizontal stress; therefore, the rock mass strength significantly increases which results also in a greater capacity of bearing a large vertical stress. The greater the size of pre-tensioned force, the larger the region of stress redistribution around a roadway is affected and the higher the size of the stress on the roadway surface the more the rock mass strength increases. 展开更多
关键词 pre-tensioned rock bolts stress redistribution numerical simulation
下载PDF
Resist-decreasing effects of rock bolts on strength of rock mass around roadway——insight from numerical modeling 被引量:8
8
作者 GAO Fu-qiang XIE Yao-she 《Mining Science and Technology》 EI CAS 2009年第4期425-429,共5页
To investigate the resist-decreasing effects of rock bolts on the strength of the rock mass around a roadway, a compara- tive study has been carded out using the numerical analysis code FLAC3D. An unsupported and a ro... To investigate the resist-decreasing effects of rock bolts on the strength of the rock mass around a roadway, a compara- tive study has been carded out using the numerical analysis code FLAC3D. An unsupported and a rock bolt supported model have been built for comparison. Two types of rock mass strength, the uniaxial compressive strength (UCS) and the wiaxial compressive strength (TCS) of rock mass have been obtained from each model, using a prepared Fish based on the Mohr-Coulomb criterion. The results indicate that when a roadway is excavated, both the UCS and TCS in a definite local rock mass around the roadway would inevitably decrease, no matter whether the roadway is supported or not. The major decreasing region did not settle in the middle of the roadway surface, but within a deeper horizon into the rock mass. The resist-decreasing effects of rock bolts both on the UCS and the TCS of rock mass around roadway are significant. 展开更多
关键词 resist-decrease rock mass strength rock bolts numerical simulation
下载PDF
Deformation-softening behaviors of high-strength and high-toughness steels used for rock bolts 被引量:4
9
作者 Ding Wang Manchao He +2 位作者 Zhigang Tao Aipeng Guo Xuchun Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第6期1872-1884,共13页
In deep ground engineering,the use of high-strength and high-toughness steels for rock bolt can significantly improve its energy absorption capacity.However,the mechanisms and effects of rock loading conditions on thi... In deep ground engineering,the use of high-strength and high-toughness steels for rock bolt can significantly improve its energy absorption capacity.However,the mechanisms and effects of rock loading conditions on this kind of high energy-absorbing steel for rock bolt remain immature.In this study,taking Muzhailing highway tunnel as the background,physically based crystal plasticity simulations were performed to understand the effect of rock loading rate and pretension on the deformation behaviors of twinning induced plasticity(TWIP)steel used for rock bolt.The material physical connecting to the underlying microscopic mechanisms of dislocation glide and deformation twinning were incorporated in numerical modeling.The rock loading conditions were mimicked by the real-time field monitoring data of the NPR bolt/cable equipment installed on the tunnel surrounding rock surface.The results indicate that the bolt rod exhibits pronounced deformation-softening behavior with decrease of the loading rate.There is also a sound deformation-relaxation phenomenon induced by the dramatic decrease of loading rate after pre-tensioning.The high pretension(>600 MPa or 224 k N)can help bolt rod steel resist deformation-softening behavior,especially at low loading rate(<10~(-1)MPa/s or 10~(-2)kN/s).The loading rate was found to be a significant factor affecting deformation-softening behavior while the pretension was found to be the major parameter accounting for the deformation-relaxation scenario.The results provide the theoretical basis and technical support for practical applications. 展开更多
关键词 rock bolt High-strength and high-toughness steels Loading rate PRETENSION Deformation-softening Crystal plasticity
下载PDF
Establishing the need to model the actual state of stress along rock bolts 被引量:4
10
作者 Prasoon Singh AJS(Sam)Spearing +1 位作者 K.V.Jessu Pâmmela Caroline Pinazzi da Silva Ribeiro 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第3期279-286,共8页
Proper design of rock bolt support in underground mines is critical to avoid incidents, accidents and loss of production. The traditional design approach only considers the axial(tensile) capacity and this is clearly ... Proper design of rock bolt support in underground mines is critical to avoid incidents, accidents and loss of production. The traditional design approach only considers the axial(tensile) capacity and this is clearly not the situation in situ, where a rock bolt is subjected to both axial and shear/bending loads which determines its overall performance and failure behaviour. To demonstrate and analyse the shear displacement in bedded roof, scaled physical models of underground excavation were created. From the models it was found that the shear displacement between the layers depends on the vertical roof deformation and thickness of beds. To analyse the effect of combined loading on rock bolt design for suspension and beam building models, analytical methods were used to calculate the required spacing of rock bolt for a given safety factor. Numerical models were then created using Rocscience RS2 software to establish the stresses on the rock bolt. The results show a significant reduction in safety factor for suspension as demonstrated in an example(reduced from 3.5 to 2.0) and beam building(2.0 to 1.36) when the rock bolt capacities are calculated considering the effect of combined loading as opposed to just the axial or shear loads. 展开更多
关键词 Combined loading rock bolt Suspension model Beam building model Numerical modelling Analytical methods
下载PDF
A hardening load transfer function for rock bolts and its calibration using distributed fiber optic sensing 被引量:4
11
作者 Assaf Klar Ori Nissim Itai Elkayam 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第11期2816-2830,共15页
Confinement of rock bolts by the surrounding rock formation has long been recognized as a positive contributor to the pull-out behavior,yet only a few experimental works and analytical models have been reported,most o... Confinement of rock bolts by the surrounding rock formation has long been recognized as a positive contributor to the pull-out behavior,yet only a few experimental works and analytical models have been reported,most of which are based on the global rock bolt response evaluated in pull-out tests.This paper presents a laboratory experimental setup aiming to capture the rock formation effect,while using distributed fiber optic sensing to quantify the effect of the confinement and the reinforcement pull-out behavior on a more local level.It is shown that the behavior along the sample itself varies,with certain points exhibiting stress drops with crack formation.Some edge effects related to the kinematic freedom of the grout to dilate are also observed.Regardless,it was found that the mid-level response is quite similar to the average response along the sample.The ability to characterize the variation of the response along the sample is one of the many advantages high-resolution fiber optic sensing allows in such investigations.The paper also offers a plasticity-based hardening load transfer function,representing a"slice"of the anchor.The paper describes in detail the development of the model and the calibration/determination of its parameters.The suggested model captures well the coupled behavior in which the pull-out process leads to an increase in the confining stress due to dilative behavior. 展开更多
关键词 rock bolts Distributed fiber optic sensing Pull-out tests Load transfer function Hardening model
下载PDF
Effects of Rock Bolting on Stress Distribution around Tunnel Using the Elastoplastic Model 被引量:3
12
作者 Muya M S 何波 +1 位作者 王靖涛 李国成 《Journal of China University of Geosciences》 SCIE CSCD 2006年第4期337-341,354,共6页
To ensure the stability of a tunnel during construction, rock bolts are usually installed, which affects the stress distribution around the tunnel. Therefore, it is necessary to study the effects of rock bolting on th... To ensure the stability of a tunnel during construction, rock bolts are usually installed, which affects the stress distribution around the tunnel. Therefore, it is necessary to study the effects of rock bolting on the stress distribution around the tunnel. In this article, the effects of rock bolting on the stress distribution around the tunnel, including the pesition and orientation of bolts, the overburden depths, and the bolt lengths, are simulated using the ANSYS software with an elnstoplastic model. The effect of multiple bolts of 2 m and 1 m lengths on the stress distribution in the roof and on the lateral sides of a tunnel and at different overburden depths is considered. An important finding is that the tensile stress region that is very dangerous for rock in the bottom of the tunnel grows rapidly with increasing overburden depths when rock bolts are installed only in the roof or on the lateral sides of a tunnel. The determination of the length of the rock bolt used around a tunnel is dependent on the loads and the integrity of the rock mass around the tunnel. In addition, rock bolting around the tunnel can obviously reduce the coefficients and the size of the region of stress concentration, especially when installed in high-stress areas. This fact is very important and essential for the design of tunnels and ensures engineering safety in tunnel engineering. 展开更多
关键词 computer simulation TUNNEL stress distribution rock bolt overburden depths.
下载PDF
Numerical modeling on strain energy evolution in rock system interaction with energy-absorbing prop and rock bolt 被引量:4
13
作者 Yang Hao Chunhui Liu +4 位作者 Yu Wu Hai Pu Yanlong Chen Lingling Shen Guichen Li 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第10期1273-1288,共16页
The interaction mechanism between coal and rock masses with supporting materials is significant in roadway control, especially in deep underground mining situations where dynamic hazards frequently happened due to hig... The interaction mechanism between coal and rock masses with supporting materials is significant in roadway control, especially in deep underground mining situations where dynamic hazards frequently happened due to high geo-stress and strong disturbed effects. This paper is to investigate the strain energy evolution in the interaction between coal and rock masses with self-designed energy-absorbing props and rock bolts by numerical modeling with the finite difference method. The interaction between rock and rock bolt/prop is accomplished by the cables element and the interface between the inner and outer props. Roadway excavation and coal extraction conditions in deep mining are numerically employed to investigate deformation, plastic zone ranges, strain energy input, accumulation, dissipation,and release. The effect on strain energy input, accumulation, dissipation, and release with rock deformation, and the plastic zone is addressed. A ratio of strain energy accumulation, dissipation, and release with energy input a, β, γ is to assess the dynamic hazards. The effects on roadway excavation and coal extraction steps of a, β, γ are discussed. The results show that:(1) In deep high geo-stress roadways, the energyabsorbing support system plays a dual role in resisting deformation and reducing the scope of plastic zones in surrounding rock, as well as absorbing energy release in the surrounding rock, especially in the coal extraction state to mitigate disturbed effects.(2) The strain energy input, accumulation is dependent on roadway deformation, the strain energy dissipation is relied on plastic zone area and disturbed effects, and strain energy release density is the difference among the three. The function of energyabsorbing rock bolts and props play a key role to mitigate strain energy release density and amount, especially in coal extraction condition, with a peak density value from 4×10^(4) to 1×10^(4)J/m^(3), and amount value from 3.57×10^(8) to 1.90×10^(6)J.(3) When mining is advanced in small steps, the strain energy accumulation is dominated. While in a large step, the released energy is dominant, thus a more dynamic hazards proneness. The energy-absorbing rock bolt and prop can reduce three times strain energy release amount, thus reducing the dynamic hazards. The results suggest that energy-absorbing props and rock bolts can effectively reduce the strain energy in the coal and rock masses, and prevent rock bursts and other hazards.The numerical model developed in this study can also be used to optimize the design of energyabsorbing props and rock bolts for specific mining conditions. 展开更多
关键词 Strain energy Coal and rock mass Energy-absorbing prop and rock bolt Strain energy evolution
下载PDF
Influence of anchorage length and pretension on the working resistance of rock bolt based on its tensile characteristics 被引量:3
14
作者 Jucai Chang Kai He +3 位作者 Dongdong Pang Dong Li Chuanming Li Bingjun Sun 《International Journal of Coal Science & Technology》 EI CAS CSCD 2021年第6期1384-1399,共16页
In coal mining roadway support design,the working resistance of the rock bolt is the key factor affecting its maximum support load.Effective improvement of the working resistance is of great significance to roadway su... In coal mining roadway support design,the working resistance of the rock bolt is the key factor affecting its maximum support load.Effective improvement of the working resistance is of great significance to roadway support.Based on the rock bolt’s tensile characteristics and the mining roadway surrounding rock deformation,a mechanical model for calculating the working resistance of the rock bolt was established and solved.Taking the mining roadway of the 17102(3)working face at the Panji No.3 Coal Mine of China as a research site,with a quadrilateral section roadway,the influence of pretension and anchorage length on the working resistance of high-strength and ordinary rock bolts in the middle and corner of the roadway is studied.The results show that when the bolt is in the elastic stage,increasing the pretension and anchorage length can effectively improve the working resistance.When the bolt is in the yield and strain-strengthening stages,increasing the pretension and anchorage length cannot effectively improve the working resistance.The influence of pretension and anchorage length on the ordinary and high-strength bolts is similar.The ordinary bolt’s working resistance is approximately 25 kN less than that of the high-strength bolt.When pretension and anchorage length are considered separately,the best pretensions of the high-strength bolt in the middle of the roadway side and the roadway corner are 41.55 and 104.26 kN,respectively,and the best anchorage lengths are 1.54 and 2.12 m,respectively.The best anchorage length of the ordinary bolt is the same as that of the high-strength bolt,and the best pretension for the ordinary bolt in the middle of the roadway side and at the roadway corner is 33.51 and 85.12 kN,respectively.The research results can provide a theoretical basis for supporting the design of quadrilateral mining roadways. 展开更多
关键词 Working resistance of rock bolt PRETENSION Anchorage length Ordinary bolt High-strength bolt Quadrilateral section roadway
下载PDF
Experimental study and stress analysis of rock bolt anchorage performance 被引量:15
15
作者 Yu Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2014年第5期428-437,共10页
A new method was developed to apply pull-and-shear loads to the bolt specimen in order to evaluate theanchorage performance of the rebar bolt and the D-Bolt. In the tests, five displacing angles (0°, 20°, 4... A new method was developed to apply pull-and-shear loads to the bolt specimen in order to evaluate theanchorage performance of the rebar bolt and the D-Bolt. In the tests, five displacing angles (0°, 20°, 40°,60°, and 90°), two joint gaps (0 mm and 30 mm), and three kinds of host rock materials (weak concrete,strong concrete, and concrete-granite) were considered, and stressestrain measurements were conducted.Results show that the ultimate loads of both the D-Bolt and the rebar bolt remained constantwith any displacing angles. The ultimate displacement of the D-Bolt changed from 140 mm at the0 displacing angle (pure pull) to approximately 70 mm at a displacing angle greater than 40. Thedisplacement capacity of the D-Bolt is approximately 3.5 times that of the rebar bolt under pure pull and50% higher than that of the rebar bolt under pure shear. The compressive stress exists at 50 mm from thebolt head, and the maximum bending moment value rises with the increasing displacing angle. The rebarbolt mobilises greater applied load than the D-Bolt when subjected to the maximum bending. Theyielding length (at 0) of the D-Bolt is longer than that of the rebar bolt. The displacement capacity of thebolts increased with the joint gap. The bolt subjected to joint gap effect yields more quickly with greaterbending moment and smaller applied load. The displacement capacities of the D-Bolt and the rebar boltare greater in the weak host rock than that in the hard host rock. In pure shear condition, the ultimateload of the bolts slightly decreases in the hard rock. The yielding speed in the hard rock is higher thanthat in the weak rock. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved. 展开更多
关键词 rock bolt D-bolt Pull-and-shear Stress Bending Joint gap rock strength
下载PDF
A study of rock bolting failure modes 被引量:16
16
作者 Cao Chen Jan Nemcik +1 位作者 Ren Ting Naj Aziz 《International Journal of Mining Science and Technology》 SCIE EI 2013年第1期79-88,共10页
Rock bolting has advanced rapidly during the past 4 decades due to a better understanding of load transfer mechanisms and advances made in the bolt system technology. Bolts are used as permanent and temporary support ... Rock bolting has advanced rapidly during the past 4 decades due to a better understanding of load transfer mechanisms and advances made in the bolt system technology. Bolts are used as permanent and temporary support systems in tunnelling and mining operations. A review of has indicated that three systems of reinforcement devices have evolved as part of rock bolt and ground anchor while the rock is not generally thought of as being a component of the reinforcement system. A classification of rock bolting reinforcement systems is presented, followed by the fundamental theory of the load transfer mechanism. The failure mode of two phases of rock bolting system is formularised. The failure modes of cable bolting are discussed using a bond strength model as well as an iterative method. Finally, the interfacial shear stress model for ribbed bar is introduced and a closed form solution is obtained using a tri-line stress strain relationship. 展开更多
关键词 rock bolting Failure modes Analytical solution
下载PDF
Studying the performance of fully encapsulated rock bolts with modified structural elements 被引量:2
17
作者 Jianhang Chen Hongbao Zhao +2 位作者 Fulian He Junwen Zhang Kangming Tao 《International Journal of Coal Science & Technology》 EI CAS CSCD 2021年第1期64-76,共13页
Numerical simulation is a useful tool in investigating the loading performance of rock bolts.The cable structural elements(cableSELs)in FLAC3D are commonly adopted to simulate rock bolts to solve geotechnical issues.I... Numerical simulation is a useful tool in investigating the loading performance of rock bolts.The cable structural elements(cableSELs)in FLAC3D are commonly adopted to simulate rock bolts to solve geotechnical issues.In this study,the bonding performance of the interface between the rock bolt and the grout material was simulated with a two-stage shearing coupling model.Furthermore,the FISH language was used to incorporate this two-stage shear coupling model into FLAC3D to modify the current cableSELs.Comparison was performed between numerical and experimental results to confirm that the numerical approach can properly simulate the loading performance of rock bolts.Based on the modified cableSELs,the influence of the bolt diameter on the performance of rock bolts and the shear stress propagation along the interface between the bolt and the grout were studied.The simulation results indicated that the load transfer capacity of rock bolts rose with the rock bolt diameter apparently.With the bolt diameter increasing,the performance of the rock bolting system was likely to change from the ductile behaviour to the brittle behaviour.Moreover,after the rock bolt was loaded,the position where the maximum shear stress occurred was variable.Specifically,with the continuous loading,it shifted from the rock bolt loaded end to the other end. 展开更多
关键词 Fully encapsulated rock bolts Numerical simulation Structural elements Shear coupling model Interface shear strength
下载PDF
Numerical analysis of the effects of rock bolts on stress redistribution around a roadway 被引量:6
18
作者 Du Zesheng Qin Botao Tian Fuchao 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第6期975-980,共6页
Besides opening geometry, in situ stress and material properties, opening support also has significant effects on stress redistribution around a roadway. To investigate these effects of rock bolts on the stress redist... Besides opening geometry, in situ stress and material properties, opening support also has significant effects on stress redistribution around a roadway. To investigate these effects of rock bolts on the stress redistribution around a roadway, a series of numerical studies were carried out using the finite difference method. Since the stress changes around a roadway caused by rock bolting is small relative to the in situ stress, they cannot obviously be observed in stress contour plots. To overcome this difficulty, a new result processing methodology was developed using the contouring program Surfer. With this methodology, the effects of rock bolts on stress redistribution can obviously be analyzed. Numerical results show that in the three patterns of rock bolts installed in the roof, in the roof and the two lateral sides, and in all the four sides of the rectangular roadway, the maximum stress magnitude of the increase is 0.931 MPa, 2.46 MPa,and 6.5 MPa, respectively; the bolt number of 5 can form an integrated ground arch; the appropriate length and pre-tensioned force of the rock bolt is 2.0 m and 60 k N, respectively. What is more, the ground arch action under the function of rock bolting is able to be effectively examined. The rock bolts dramatically increase the minor principal stress around a roadway which results in significant increase in material strength. Consequently, the major principal stress that the material can carry will greatly increase.With adequate supports, an integrated ground arch which is critical for the stability of roadway will be formed around the roadway. 展开更多
关键词 rock bolts Stress redistribution Numerical simulation Result process
下载PDF
A novel rock bolting system exploiting steel particles 被引量:1
19
作者 Xiaowei Feng Fei Xue +3 位作者 Valter Carvelli Tongyang Zhao Fengzhen He Dehua Wang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第5期1045-1058,共14页
The effectiveness of rock bolting in ground control has been extensively investigated,mainly for resin based systems.Alternative coupling materials are needed to have good mechanical performance and to reduce the econ... The effectiveness of rock bolting in ground control has been extensively investigated,mainly for resin based systems.Alternative coupling materials are needed to have good mechanical performance and to reduce the economic impact.This study proposed a new bolting system exploiting steel particles as coupling material.The applicability of this system was assessed by laboratory and field pullout tests,assisted by digital imaging correlation(DIC),infrared thermography(IRT)and acoustic emission(AE).The results indicated that,for a 20 mm diameter bolt,the suitable steel particle size and corresponding inner diameter of borehole were 1.4 and 28 mm,respectively.For bolts installed in steel tubes,the particles improved the loading capacity compared to the resin bonded ones.Additional pullout tests on cement blocks indicated that steel particles can be effective for hard rock,whilst resin was a better choice for bolting of soft rock.Similar understanding was obtained by pullout tests in engineering fields,which demonstrated that the steel particles coupled bolts can provide favorable effects in hard rock mass,while the effects were negligible when installed in extremely soft coal mass.The wide set of multi-technique measurements helped to understand the mechanisms involved in the performance of the bolting system with coupling steel particles. 展开更多
关键词 rock bolt Steel particle Pullout test Digital image correlation Infrared thermography Field test
下载PDF
Technical problems and non destructive testing of rock bolt support systems in mines
20
作者 Andrzej Staniek 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第1期124-135,共12页
The problem of proper assessment of the technical functionality of rock bolt support systems is still valid.Many research centers have undertaken eforts to diagnose and monitor the technical state of such a support sy... The problem of proper assessment of the technical functionality of rock bolt support systems is still valid.Many research centers have undertaken eforts to diagnose and monitor the technical state of such a support system used in mines and tunneling.With that aim the method of quality assessment of grouted rock bolts was invented and a relevant apparatus was constructed.The method concerns non-destructive identifcation of discontinuity of a resin layer(grout)surrounding rock bolts.The method is based on an impact excitation of a rock bolt and uses modal analysis procedures.Assuming that the installed rock bolt acts as an oscillator,diferent lengths and positions of grouting discontinuity alter its modal parameters.The extraction of these modal parameters,of which a resonant frequency is seen as the most valued,enable the relevant identifcation of grout discontinuity.After constructing a prototype version and validating the results for known cases of resin discontinuity in an experimental coal mine,the apparatus fulflling ATEX requirements was developed.Subsequently that version was also verifed both in laboratory conditions and in an experimental coal mine.As necessary for proper identifcation of discontinuity length,the reference data base was developed and elaborated consisting of a very large number of fnite element models(FE models),namely discontinuity cases.The models encountered diferent rock bolt lengths and diameters,diferent rock strata parameters and diferent positions and lengths of resin layers.Then the method was used in a working coal mine to monitor a technical state of rock bolt support system mounted to reinforce long underground openings.The data base was utilized as reference for investigated rock bolts. 展开更多
关键词 rock rock bolt SAFETY Modal analysis MINING
下载PDF
上一页 1 2 105 下一页 到第
使用帮助 返回顶部