The geological features of three types of tropical volcanic rock and soil distributed along Jakarta-Bandung high-speed railway(HSR),including pozzolanic clayey soil,mud shale and deep soft soil,are studied through fie...The geological features of three types of tropical volcanic rock and soil distributed along Jakarta-Bandung high-speed railway(HSR),including pozzolanic clayey soil,mud shale and deep soft soil,are studied through field and laboratory tests.The paper analyzes the mechanism and causes of engineering geological problems caused by tropical volcanic rock and soil and puts forward measures to control subgrade slope instability by rationally determining project type,making side slope stability control and strengthening waterproofing and drainage.The“zero front slope”tunneling technology at the portal,the simplified excavation method of double-side wall heading and the cross brace construction method of arch protection within the semi-open cut row pile frame in the“mountainside”eccentrically loaded soft soil stratum are adopted to control the instability of tunnel side and front slopes,foundation pits and working faces;CFG or pipe piles shall be used to reinforce soft and expansive foundation or replacement measures shall be taken,and the scheme of blind ditch+double-layer water sealing in ballastless track section shall be put forward to prevent arching deformation of foundation;the treatment measures of CFG pile,pipe pile and vacuum combined piled preloading are adopted to improve the bearing capacity of foundation in deep soft soil section and solve the problems of settlement control and uneven settlement.These engineering countermeasures have been applied during the construction of Jakarta-Bandung HSR and achieved good results.展开更多
Testing of large-sized specimens is becoming increasingly important in deep underground rock mechanics and engineering.In traditional mechanical loading,stresses on large-sized specimens are achieved by large host fra...Testing of large-sized specimens is becoming increasingly important in deep underground rock mechanics and engineering.In traditional mechanical loading,stresses on large-sized specimens are achieved by large host frames and hydraulic pumps,which could lead to great investment.Low-cost testing machines clearly always have great appeal.In this study,a new approach is proposed using thermal expansion stress to load rock specimens,which may be particularly suitable for tests of deep hot dry rock with high temperatures.This is a different technical route from traditional mechanical loading through hydraulic pressure.For the rock mechanics test system of hot dry rock that already has an investment in heating systems,this technology may reduce the cost of the loading subsystem by fully utilizing the temperature changes.This paper presents the basic principle and a typical design of this technical solution.Preliminary feasibility analysis is then conducted based on numerical simulations.Although some technical details still need to be resolved,the feasibility of this loading approach has been preliminarily confirmed.展开更多
Microwave pre-treatment is considered as a promising technique for alleviating cutter wear. This paper introduces a high-power microwave-induced fracturing system for hard rock. The test system consists of a high-powe...Microwave pre-treatment is considered as a promising technique for alleviating cutter wear. This paper introduces a high-power microwave-induced fracturing system for hard rock. The test system consists of a high-power microwave subsystem (100 kW), a true triaxial testing machine, a dynamic monitoring subsystem, and an electromagnetic shielding subsystem. It can realize rapid microwave-induced fracturing, intelligent tuning of impedance, dynamic feedback under strong microwave fields, and active control of microwave parameters by addressing the following issues: the instability and insecurity of the system, the discharge breakdown between coaxial lines during high-power microwave output, and a lack of feedback of rock-microwave response. In this study, microwave-induced surface and borehole fracturing tests under true triaxial stress were carried out. Experimental comparisons imply that high-power microwave irradiation can reduce the fracturing time of hard rock and that the fracture range (160 mm) of a 915-MHz microwave source is about three times that of 2.45 GHz. After microwave-induced borehole fracturing, many tensile cracks occur on the rock surface and in the borehole: the maximum reduction of the P-wave velocity is 12.8%. The test results show that a high-power microwave source of 915 MHz is more conducive to assisting mechanical rock breaking and destressing. The system can promote the development of microwave-assisted rock breaking equipment.展开更多
The Qiangtang Basin of the Tibetan Plateau,located in the eastern Tethys tectonic domain,is the largest new marine petroliferous region for exploration in China.The scientific drilling project consisting primarily of ...The Qiangtang Basin of the Tibetan Plateau,located in the eastern Tethys tectonic domain,is the largest new marine petroliferous region for exploration in China.The scientific drilling project consisting primarily of well QK-1 and its supporting shallow boreholes for geological surveys(also referred to as the Project)completed in recent years contributes to a series of new discoveries and insights into the oil and gas preservation conditions and source rock evaluation of the Qiangtang Basin.These findings differ from previous views that the Qiangtang Basin has poor oil and gas preservation conditions and lacks high-quality source rocks.As revealed by well QK-1 and its supporting shallow boreholes in the Project,the Qiangtang Basin hosts two sets of high-quality regional seals,namely an anhydrite layer in the Quemo Co Formation and the gypsum-bearing mudstones in the Xiali Formation.Moreover,the Qiangtang Basin has favorable oil and gas preservation conditions,as verified by the comprehensive study of the sealing capacity of seals,basin structure,tectonic uplift,magmatic activity,and groundwater motion.Furthermore,the shallow boreholes have also revealed that the Qiangtang Basin has high-quality hydrocarbon source rocks in the Upper Triassic Bagong Formation,which are thick and widely distributed according to the geological and geophysical data.In addition,the petroleum geological conditions,such as the type,abundance,and thermal evolution of organic matter,indicate that the Qiangtang Basin has great hydrocarbon-generating potential.展开更多
Classical rock mass classification systems are not applicable to carbonate rocks,especially when these are affected by karst processes.Their applications to such settings could therefore result in outcomes not represe...Classical rock mass classification systems are not applicable to carbonate rocks,especially when these are affected by karst processes.Their applications to such settings could therefore result in outcomes not representative of the real stress-strain behavior.In this study,we propose a new classification of carbonate rock masses for engineering purposes,by adapting the rock engineering system(RES) method by Hudson for fractured and karstified rock masses,in order to highlight the problems of implementation of geomechanical models to carbonate rocks.This new approach allows a less rigid classification for carbonate rock masses,taking into account the local properties of the outcrops,the site conditions and the type of engineering work as well.展开更多
A new approach for prediction of face advance rete (FAR) prior to mining operation and determination of the operation efficiency after mining operation in retreat longwall mining panel is presented based upon the conc...A new approach for prediction of face advance rete (FAR) prior to mining operation and determination of the operation efficiency after mining operation in retreat longwall mining panel is presented based upon the concepts of rock engineering system (RES). For this purpose, six longwall panels considered in Parvadeh-I coal mine. Seven major effective parameters on FAR was selected including coal mine roof rating, gas propagation, safety factor of longwall face, ratio of joint spacing to cutting depth at longwall face, longwall face inclination, panel width, floor rock mass rating. To performance evaluation of the presented model, the relationship between the average vulnerability indexes of advance operation with FAR was determined in considered panels with coefficient of determination (R2) equal to 0.884 that indicate relatively acceptable correlation and compatibility. Investigations of the research indicated that it is possible to determine the actual operation efficiency under fair conditions by a RES-based model. The inevitable reduction of FAR for each longwall panel was determined by presented model that the difference amount between the maximum possible practical face advance rate (FARmpp) and recorded actual face advance rate (FARa) indicate the operation efficiency. Applied approach in this paper can be used to prediction of FAR in retreat longwall mining panel for same conditions that can have many benefits, including better and more accurate planning for the sales market and mine operation. Also, presented method in this paper can be applied as a useful tool to determination of actual operation efficiency for other sections and extraction methods in coal mines.展开更多
Combining the field monitoring results of a deep-buried tunnel in Chongqing,the dynamic characteristics of the surrounding rock system under high in situ stress wasanalyzed by phase space reconstruction, calculating c...Combining the field monitoring results of a deep-buried tunnel in Chongqing,the dynamic characteristics of the surrounding rock system under high in situ stress wasanalyzed by phase space reconstruction, calculating correlation dimension, Kolmogoroventropy and largest Lyapunov exponents.Both the Kolmogorov entropy and largestLyapunov exponents show that the surrounding rock system is a chaotic one.Based onthis, a local model was applied to predict surrounding rock displacement, and a nonlineardynamic model was derived to forecast the interaction of the surrounding rock and supportstructure.The local method was found to have an extremely small total error.Also, thenonlinear dynamic model forecasting curves agree with the monitoring ones very well.It isproved that the nonlinear dynamic characteristic study is very important in analyzing rockstability and predicting the evolution of rock systems.展开更多
Prediction of the drilling penetration rate is one of the important parameters in mining operations. This parameter has a direct impact on the mine planning and cost of mining operations, Generally, effective paramete...Prediction of the drilling penetration rate is one of the important parameters in mining operations. This parameter has a direct impact on the mine planning and cost of mining operations, Generally, effective parameters on the penetration rate is divided into two classes: rock mass properties and specifications of the machine, The chemical components of intact rock have a direct effect in determining rock mechan- ical properties, Theses parameters usually have not been investigated in any research on the rock drill- ability, In this study, physical and mechanical properties of iron ore were studied based on the amount of magnetite percent, According to the results of the tests, the effective parameters on the pen- etration rate of the rotary drilling machines were divided into three classes: specifications of the machi- nes, rock mass properties and chemical component of intact rock, Then, the rock drillahility was studied using rock engineering systems, The results showed that feed, rotation, rock mass index and iron oxide percent have important effect on penetration rate, Then a quadratic equation with 0,896 determination coefficient has been obtained, Also, the results showed that chemical components can he described as new parameters in rotary drill penetration rate,展开更多
The rock mass engineering system (RMES) basically consists ofrock mass engineering (RME), water system and surroundingecological environments, etc. The RMES is characterized by nonlinearity,occurrence of chaos and...The rock mass engineering system (RMES) basically consists ofrock mass engineering (RME), water system and surroundingecological environments, etc. The RMES is characterized by nonlinearity,occurrence of chaos and self-organization (Tazaka, 1998;Tsuda, 1998; Kishida, 2000). From construction to abandonmentof RME, the RMES will experience four stages, i.e. initial phase,development phase, declining phase and failure phase. In thiscircumstance, the RMES boundary conditions, structural safetyand surrounding environments are varied at each phase, so arethe evolution characteristics and disasters (Wang et al., 2014).展开更多
In recent years, a large number of geotechnical engineering projectshave been completed or under construction in China, such asthe Three Gorges Dam Project, Expressway Network Plan, South-to-North Water Diversion Proj...In recent years, a large number of geotechnical engineering projectshave been completed or under construction in China, such asthe Three Gorges Dam Project, Expressway Network Plan, South-to-North Water Diversion Project, West-to-East Gas Pipeline Project,etc. (Wang, 2003; Li, 2010; Huang, 2011; She and Lin, 2014). Theconstruction of large-scale geotechnical engineering not onlybrings huge economic benefits, but also causes large interferenceto the lithosphere and hydrosphere that we rely on for survival(Wang et al., 2005). This paper focuses on the interaction mechanismof rock engineering and geo-environments in the fields of urbanunderground space utilization, natural gas hydrate exploitationand high-level radioactive waste disposal.展开更多
This research describes a quantitative,rapid,and low-cost methodology for debris flow susceptibility evaluation at the basin scale using open-access data and geodatabases.The proposed approach can aid decision makers ...This research describes a quantitative,rapid,and low-cost methodology for debris flow susceptibility evaluation at the basin scale using open-access data and geodatabases.The proposed approach can aid decision makers in land management and territorial planning,by first screening for areas with a higher debris flow susceptibility.Five environmental predisposing factors,namely,bedrock lithology,fracture network,quaternary deposits,slope inclination,and hydrographic network,were selected as independent parameters and their mutual interactions were described and quantified using the Rock Engineering System(RES)methodology.For each parameter,specific indexes were proposed,aiming to provide a final synthetic and representative index of debris flow susceptibility at the basin scale.The methodology was tested in four basins located in the Upper Susa Valley(NW Italian Alps)where debris flow events are the predominant natural hazard.The proposed matrix can represent a useful standardized tool,universally applicable,since it is independent of type and characteristic of the basin.展开更多
The control of large deformation problems in layered soft rock tunnels needs to solve urgently.The roof problem is particularly severe among the deformation issues in tunnels.This study first analyzes the asymmetric d...The control of large deformation problems in layered soft rock tunnels needs to solve urgently.The roof problem is particularly severe among the deformation issues in tunnels.This study first analyzes the asymmetric deformation modes in layered soft rock tunnels with large deformations.Subsequently,we construct a mechanical model under ideal conditions for controlling the roof of layered soft rock tunnels through high preload with the support of NPR anchor cables.The prominent roles of long and short NPR anchor cables in the support system are also analyzed.The results indicate the significance of high preload in controlling the roof of layered soft rock tunnels.The short NPR anchor cables effectively improve the integrity of the stratified soft rock layers,while the long NPR anchor cables effectively mobilize the self-bearing capacity of deep-stable rock layers.Finally,the high-preload support method with NPR anchor cables is validated to have a good effect on controlling large deformations in layered soft rock tunnels through field monitoring data.展开更多
The stability control of fissured rock is difficult,especially under static and dynamic loads in deep coal mines.In this paper,the dynamic mechanical properties,strain rate evolution and energy dissipation of fissured...The stability control of fissured rock is difficult,especially under static and dynamic loads in deep coal mines.In this paper,the dynamic mechanical properties,strain rate evolution and energy dissipation of fissured and anchored rocks were respectively obtained by SHPB tests.It was found that bolt can provide supporting efficiency-improving effect for fissured rock against dynamic disturbance,and this effect increased quadratically with decrease in anchoring angles.Then,the energy dissipation mechanism of anchored rock was obtained by slipping model.Furthermore,bolt energy-absorbing mechanism by instantaneous tensile-shear deformation was expressed based on material mechanics,which was the larger the anchoring angle,the smaller the energy absorption,and the less the contribution to supporting efficiency improvement.On this basis,the functional relationship between energy dissipation of anchored rock and energy absorption of bolt was established.Taking the coal-gangue separation system of Longgu coal mine as an example,the optimal anchoring angle can be determined as 57.5°–67.5°.Field monitoring showed fissured rock with the optimal anchoring angle,can not only effectively control the deformation,but also fully exert the energy-absorbing and efficiency-improving effect of bolt itself.This study provides guidance to the stability control and supporting design for deep engineering under the same or similar conditions.展开更多
The Hot Dry Rock(HDR)is considered as a clean and renewable energy,poised to significantly contribute to the global energy decarbonization agenda.Many HDR projects worldwide have accumulated valuable experience in eff...The Hot Dry Rock(HDR)is considered as a clean and renewable energy,poised to significantly contribute to the global energy decarbonization agenda.Many HDR projects worldwide have accumulated valuable experience in efficient drilling and completion,reservoir construction,and fracture simulation.In 2019,China Geological Survey(CGS)initiated a demonstration project of HDR exploration and production in the Gonghe Basin,aiming to overcome the setbacks faced by HDR projects.Over the ensuing four years,the Gonghe HDR project achieved the first power generation in 2021,followed by the second power generation test in 2022.After establishing the primary well group in the initial phase,two directional wells and one branch well were drilled.Noteworthy progress was made in successfully constructing the targeted reservoir,realizing inter-well connectivity,power generation and grid connection,implementing of the real-time micro-seismic monitoring.A closed-loop technical validation of the HDR exploration and production was completed.However,many technical challenges remain in the process of HDR industrialization,such as reservoir fracture network characterization,efficient drilling and completion,multiple fracturing treatment,continuous injection and production,as well as mitigation of induced seismicity and numerical simulation technology.展开更多
This study introduces a test system for microwave-induced fracturing of hard rocks under true triaxial stress.The test system comprises a true triaxial stress loading system,an open-ended microwaveinduced fracturing s...This study introduces a test system for microwave-induced fracturing of hard rocks under true triaxial stress.The test system comprises a true triaxial stress loading system,an open-ended microwaveinduced fracturing system,a data acquisition system,an acoustic emission(AE)monitoring system,and an auxiliary specimen loading system.Microwave-induced surface and borehole fracturing tests under true triaxial stress were fulfilled for the first time,which overcomes the problem of microwave leakage in the coupling loading of true triaxial stress and microwave.By developing the dynamic monitoring system,the thermal response and fracture evolution were obtained during microwave irradiation.The monitoring system includes the infrared thermometry technique for monitoring rock surface temperature,the distributed optic fiber sensing technique for monitoring temperature in borehole in rock,the AE technique and two-dimensional digital speckle correlation technique for monitoring the evolution of thermal damage and the rock fracturing process.To validate the advantages of the test system and investigate the characteristics of microwave-induced fracturing of hard rocks,the study demonstrates the experimental methods and results for microwave-induced surface and borehole fracturing under true triaxial stress.The results show that thermal cracking presented intermittent characteristics(calm eactiveecalm)during microwave-induced surface and borehole fracturing of basalt.In addition,true triaxial stress can inhibit the development and distribution of thermal cracks during microwave-induced surface fracturing.When microwave-induced borehole fracturing occurs,it promotes the distribution of thermal cracks in rock,but inhibits the width of cracks.The results also prove the reliability of the test system.展开更多
To efficiently link the continuum mechanics for rocks with the structural statistics of rock masses,a theoretical and methodological system called the statistical mechanics of rock masses(SMRM)was developed in the pas...To efficiently link the continuum mechanics for rocks with the structural statistics of rock masses,a theoretical and methodological system called the statistical mechanics of rock masses(SMRM)was developed in the past three decades.In SMRM,equivalent continuum models of stressestrain relationship,strength and failure probability for jointed rock masses were established,which were based on the geometric probability models characterising the rock mass structure.This follows the statistical physics,the continuum mechanics,the fracture mechanics and the weakest link hypothesis.A general constitutive model and complete stressestrain models under compressive and shear conditions were also developed as the derivatives of the SMRM theory.An SMRM calculation system was then developed to provide fast and precise solutions for parameter estimations of rock masses,such as full-direction rock quality designation(RQD),elastic modulus,Coulomb compressive strength,rock mass quality rating,and Poisson’s ratio and shear strength.The constitutive equations involved in SMRM were integrated into a FLAC3D based numerical module to apply for engineering rock masses.It is also capable of analysing the complete deformation of rock masses and active reinforcement of engineering rock masses.Examples of engineering applications of SMRM were presented,including a rock mass at QBT hydropower station in northwestern China,a dam slope of Zongo II hydropower station in D.R.Congo,an open-pit mine in Dexing,China,an underground powerhouse of Jinping I hydropower station in southwestern China,and a typical circular tunnel in Lanzhou-Chongqing railway,China.These applications verified the reliability of the SMRM and demonstrated its applicability to broad engineering issues associated with jointed rock masses.展开更多
This paper attempts to provide an overview of risk assessment and management practice in underground rock engineering based on a review of the international literature and some personal experience. It is noted that th...This paper attempts to provide an overview of risk assessment and management practice in underground rock engineering based on a review of the international literature and some personal experience. It is noted that the terminologies used in risk assessment and management studies may vary from country to country. Probabilistic risk analysis is probably the most widely-used approach to risk assessment in rock engineering and in geotechnical engineering more broadly. It is concluded that great potential exists to augment the existing probabilistic methods by the use of Bayesian networks and decision analysis techniques to allow reasoning under uncertainty and to update probabilities, material properties and analyses as further data become available throughout the various stages of a project. Examples are given of the use of these methods in underground excavation engineering in China and elsewhere, and opportunities for their further application are identified.展开更多
The invaluable book reports the outcome of the work of the Commission on Design Methodology of the International Society for Rock Mechanics (ISRM) in the ISRM's 2011-2015 term of office during which Professor John ...The invaluable book reports the outcome of the work of the Commission on Design Methodology of the International Society for Rock Mechanics (ISRM) in the ISRM's 2011-2015 term of office during which Professor John Hudson acted as Commission Presi- dent while Professor Xia-Ting Feng served as ISRM President. It pro- vides a sequel to the authors' previous book, Rock Engineering Design (Feng and Hudson, 2011), which reported the work of the Commission in the ISRM's 2007-2011 term of office when Profes- sor Feng acted as Commission President and Professor Hudson served as ISRM President. It is also the first volume in the newly established ISRM Book Series published by CRC Press/Balkema of the Taylor & Francis Group, an initiative taken during Professor Feng's recent term of office as ISRM President.展开更多
Post failure rheology, as an important deformable behavior of average to very poor rockmass,is discussed in this paper. Three kinds of deformations, transition deformation, post failure rheological deformation and swe...Post failure rheology, as an important deformable behavior of average to very poor rockmass,is discussed in this paper. Three kinds of deformations, transition deformation, post failure rheological deformation and swelling deformation, are also introduced for they are totally different from that of traditional concepts. Transition and post failure deformations are sensitive to the environmental factors, and need to be studied in the future.展开更多
文摘The geological features of three types of tropical volcanic rock and soil distributed along Jakarta-Bandung high-speed railway(HSR),including pozzolanic clayey soil,mud shale and deep soft soil,are studied through field and laboratory tests.The paper analyzes the mechanism and causes of engineering geological problems caused by tropical volcanic rock and soil and puts forward measures to control subgrade slope instability by rationally determining project type,making side slope stability control and strengthening waterproofing and drainage.The“zero front slope”tunneling technology at the portal,the simplified excavation method of double-side wall heading and the cross brace construction method of arch protection within the semi-open cut row pile frame in the“mountainside”eccentrically loaded soft soil stratum are adopted to control the instability of tunnel side and front slopes,foundation pits and working faces;CFG or pipe piles shall be used to reinforce soft and expansive foundation or replacement measures shall be taken,and the scheme of blind ditch+double-layer water sealing in ballastless track section shall be put forward to prevent arching deformation of foundation;the treatment measures of CFG pile,pipe pile and vacuum combined piled preloading are adopted to improve the bearing capacity of foundation in deep soft soil section and solve the problems of settlement control and uneven settlement.These engineering countermeasures have been applied during the construction of Jakarta-Bandung HSR and achieved good results.
基金National Natural Science Foundation of ChinaGrant/Award Number:41972316+3 种基金Sichuan Science&Technology FoundationGrant/Award Number:2022YFSY0007Joint Funds of the National Natural Science Foundation of ChinaGrant/Award Number:U2344226。
文摘Testing of large-sized specimens is becoming increasingly important in deep underground rock mechanics and engineering.In traditional mechanical loading,stresses on large-sized specimens are achieved by large host frames and hydraulic pumps,which could lead to great investment.Low-cost testing machines clearly always have great appeal.In this study,a new approach is proposed using thermal expansion stress to load rock specimens,which may be particularly suitable for tests of deep hot dry rock with high temperatures.This is a different technical route from traditional mechanical loading through hydraulic pressure.For the rock mechanics test system of hot dry rock that already has an investment in heating systems,this technology may reduce the cost of the loading subsystem by fully utilizing the temperature changes.This paper presents the basic principle and a typical design of this technical solution.Preliminary feasibility analysis is then conducted based on numerical simulations.Although some technical details still need to be resolved,the feasibility of this loading approach has been preliminarily confirmed.
基金support from the Na-tional Natural Science Foundation of China(Grant No.41827806)the liaoning Revitalization Talent Program of China(Grant No.XLYCYSZX1902).
文摘Microwave pre-treatment is considered as a promising technique for alleviating cutter wear. This paper introduces a high-power microwave-induced fracturing system for hard rock. The test system consists of a high-power microwave subsystem (100 kW), a true triaxial testing machine, a dynamic monitoring subsystem, and an electromagnetic shielding subsystem. It can realize rapid microwave-induced fracturing, intelligent tuning of impedance, dynamic feedback under strong microwave fields, and active control of microwave parameters by addressing the following issues: the instability and insecurity of the system, the discharge breakdown between coaxial lines during high-power microwave output, and a lack of feedback of rock-microwave response. In this study, microwave-induced surface and borehole fracturing tests under true triaxial stress were carried out. Experimental comparisons imply that high-power microwave irradiation can reduce the fracturing time of hard rock and that the fracture range (160 mm) of a 915-MHz microwave source is about three times that of 2.45 GHz. After microwave-induced borehole fracturing, many tensile cracks occur on the rock surface and in the borehole: the maximum reduction of the P-wave velocity is 12.8%. The test results show that a high-power microwave source of 915 MHz is more conducive to assisting mechanical rock breaking and destressing. The system can promote the development of microwave-assisted rock breaking equipment.
基金funded by projects of the National Natural Science Foundation of China(91955204,42241202)the Second Tibetan Plateau Scientific Expedition and Research(2019QZKK080301)a project entitled Tectonics,Sedimentation,Evolution,and Basic Petroleum Geology of the Qiangtang Basin(2021DJ0801)of the Forward-looking Basic Subjects of PetroChina’s 14th Five-Year Plan.
文摘The Qiangtang Basin of the Tibetan Plateau,located in the eastern Tethys tectonic domain,is the largest new marine petroliferous region for exploration in China.The scientific drilling project consisting primarily of well QK-1 and its supporting shallow boreholes for geological surveys(also referred to as the Project)completed in recent years contributes to a series of new discoveries and insights into the oil and gas preservation conditions and source rock evaluation of the Qiangtang Basin.These findings differ from previous views that the Qiangtang Basin has poor oil and gas preservation conditions and lacks high-quality source rocks.As revealed by well QK-1 and its supporting shallow boreholes in the Project,the Qiangtang Basin hosts two sets of high-quality regional seals,namely an anhydrite layer in the Quemo Co Formation and the gypsum-bearing mudstones in the Xiali Formation.Moreover,the Qiangtang Basin has favorable oil and gas preservation conditions,as verified by the comprehensive study of the sealing capacity of seals,basin structure,tectonic uplift,magmatic activity,and groundwater motion.Furthermore,the shallow boreholes have also revealed that the Qiangtang Basin has high-quality hydrocarbon source rocks in the Upper Triassic Bagong Formation,which are thick and widely distributed according to the geological and geophysical data.In addition,the petroleum geological conditions,such as the type,abundance,and thermal evolution of organic matter,indicate that the Qiangtang Basin has great hydrocarbon-generating potential.
基金supported by MIUR (Italian Ministry of Education,University and Research Grant 15034/ 2007) under Grant 2010 ex MURST 60%"Modelli geologico-tecnici, idrogeologici e geofisici per la tutela e la valorizzazione delle risorse naturali,ambientali e culturali"(coordinator G.F.Andriani) and Grant 2013 ex MURST 60%"Ricerche stratigrafico-sedimentologiche di base ed applicate per it riconoscimento,la gestione e la tutela delle georisorse e dei beni storico/culturali e geoambientali"(coordinator M.Tropeano)the project Interreg Ⅲ A-"WET SYS B" 200-2006(responsible G.F.Andriani),with the financial contribution by the European Community
文摘Classical rock mass classification systems are not applicable to carbonate rocks,especially when these are affected by karst processes.Their applications to such settings could therefore result in outcomes not representative of the real stress-strain behavior.In this study,we propose a new classification of carbonate rock masses for engineering purposes,by adapting the rock engineering system(RES) method by Hudson for fractured and karstified rock masses,in order to highlight the problems of implementation of geomechanical models to carbonate rocks.This new approach allows a less rigid classification for carbonate rock masses,taking into account the local properties of the outcrops,the site conditions and the type of engineering work as well.
文摘A new approach for prediction of face advance rete (FAR) prior to mining operation and determination of the operation efficiency after mining operation in retreat longwall mining panel is presented based upon the concepts of rock engineering system (RES). For this purpose, six longwall panels considered in Parvadeh-I coal mine. Seven major effective parameters on FAR was selected including coal mine roof rating, gas propagation, safety factor of longwall face, ratio of joint spacing to cutting depth at longwall face, longwall face inclination, panel width, floor rock mass rating. To performance evaluation of the presented model, the relationship between the average vulnerability indexes of advance operation with FAR was determined in considered panels with coefficient of determination (R2) equal to 0.884 that indicate relatively acceptable correlation and compatibility. Investigations of the research indicated that it is possible to determine the actual operation efficiency under fair conditions by a RES-based model. The inevitable reduction of FAR for each longwall panel was determined by presented model that the difference amount between the maximum possible practical face advance rate (FARmpp) and recorded actual face advance rate (FARa) indicate the operation efficiency. Applied approach in this paper can be used to prediction of FAR in retreat longwall mining panel for same conditions that can have many benefits, including better and more accurate planning for the sales market and mine operation. Also, presented method in this paper can be applied as a useful tool to determination of actual operation efficiency for other sections and extraction methods in coal mines.
基金Supported by the New Century Excellent Talent Foundation from MOE of China(NCET-09-0844)the National Natural Science Foundation of China(50804060,50621403)
文摘Combining the field monitoring results of a deep-buried tunnel in Chongqing,the dynamic characteristics of the surrounding rock system under high in situ stress wasanalyzed by phase space reconstruction, calculating correlation dimension, Kolmogoroventropy and largest Lyapunov exponents.Both the Kolmogorov entropy and largestLyapunov exponents show that the surrounding rock system is a chaotic one.Based onthis, a local model was applied to predict surrounding rock displacement, and a nonlineardynamic model was derived to forecast the interaction of the surrounding rock and supportstructure.The local method was found to have an extremely small total error.Also, thenonlinear dynamic model forecasting curves agree with the monitoring ones very well.It isproved that the nonlinear dynamic characteristic study is very important in analyzing rockstability and predicting the evolution of rock systems.
文摘Prediction of the drilling penetration rate is one of the important parameters in mining operations. This parameter has a direct impact on the mine planning and cost of mining operations, Generally, effective parameters on the penetration rate is divided into two classes: rock mass properties and specifications of the machine, The chemical components of intact rock have a direct effect in determining rock mechan- ical properties, Theses parameters usually have not been investigated in any research on the rock drill- ability, In this study, physical and mechanical properties of iron ore were studied based on the amount of magnetite percent, According to the results of the tests, the effective parameters on the pen- etration rate of the rotary drilling machines were divided into three classes: specifications of the machi- nes, rock mass properties and chemical component of intact rock, Then, the rock drillahility was studied using rock engineering systems, The results showed that feed, rotation, rock mass index and iron oxide percent have important effect on penetration rate, Then a quadratic equation with 0,896 determination coefficient has been obtained, Also, the results showed that chemical components can he described as new parameters in rotary drill penetration rate,
基金funded by the National Natural Science Foundation of China(Grant Nos.51274110,51304108,U1361211)
文摘The rock mass engineering system (RMES) basically consists ofrock mass engineering (RME), water system and surroundingecological environments, etc. The RMES is characterized by nonlinearity,occurrence of chaos and self-organization (Tazaka, 1998;Tsuda, 1998; Kishida, 2000). From construction to abandonmentof RME, the RMES will experience four stages, i.e. initial phase,development phase, declining phase and failure phase. In thiscircumstance, the RMES boundary conditions, structural safetyand surrounding environments are varied at each phase, so arethe evolution characteristics and disasters (Wang et al., 2014).
文摘In recent years, a large number of geotechnical engineering projectshave been completed or under construction in China, such asthe Three Gorges Dam Project, Expressway Network Plan, South-to-North Water Diversion Project, West-to-East Gas Pipeline Project,etc. (Wang, 2003; Li, 2010; Huang, 2011; She and Lin, 2014). Theconstruction of large-scale geotechnical engineering not onlybrings huge economic benefits, but also causes large interferenceto the lithosphere and hydrosphere that we rely on for survival(Wang et al., 2005). This paper focuses on the interaction mechanismof rock engineering and geo-environments in the fields of urbanunderground space utilization, natural gas hydrate exploitationand high-level radioactive waste disposal.
文摘This research describes a quantitative,rapid,and low-cost methodology for debris flow susceptibility evaluation at the basin scale using open-access data and geodatabases.The proposed approach can aid decision makers in land management and territorial planning,by first screening for areas with a higher debris flow susceptibility.Five environmental predisposing factors,namely,bedrock lithology,fracture network,quaternary deposits,slope inclination,and hydrographic network,were selected as independent parameters and their mutual interactions were described and quantified using the Rock Engineering System(RES)methodology.For each parameter,specific indexes were proposed,aiming to provide a final synthetic and representative index of debris flow susceptibility at the basin scale.The methodology was tested in four basins located in the Upper Susa Valley(NW Italian Alps)where debris flow events are the predominant natural hazard.The proposed matrix can represent a useful standardized tool,universally applicable,since it is independent of type and characteristic of the basin.
基金financial support from the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(No.2019QZKK0708)the National Natural Science Foundation of China(No.41941018)the Special Fund of Yueqi Scholars(No.800015Z1207).
文摘The control of large deformation problems in layered soft rock tunnels needs to solve urgently.The roof problem is particularly severe among the deformation issues in tunnels.This study first analyzes the asymmetric deformation modes in layered soft rock tunnels with large deformations.Subsequently,we construct a mechanical model under ideal conditions for controlling the roof of layered soft rock tunnels through high preload with the support of NPR anchor cables.The prominent roles of long and short NPR anchor cables in the support system are also analyzed.The results indicate the significance of high preload in controlling the roof of layered soft rock tunnels.The short NPR anchor cables effectively improve the integrity of the stratified soft rock layers,while the long NPR anchor cables effectively mobilize the self-bearing capacity of deep-stable rock layers.Finally,the high-preload support method with NPR anchor cables is validated to have a good effect on controlling large deformations in layered soft rock tunnels through field monitoring data.
基金the financial support from the National Natural Science Foundation of China(Nos.52374094,52174122 and 52374218)Excellent Youth Fund of Shandong Natural Science Foundation(No.ZR2022YQ49)Taishan Scholar Project in Shandong Province(Nos.tspd20210313 and tsqn202211150)。
文摘The stability control of fissured rock is difficult,especially under static and dynamic loads in deep coal mines.In this paper,the dynamic mechanical properties,strain rate evolution and energy dissipation of fissured and anchored rocks were respectively obtained by SHPB tests.It was found that bolt can provide supporting efficiency-improving effect for fissured rock against dynamic disturbance,and this effect increased quadratically with decrease in anchoring angles.Then,the energy dissipation mechanism of anchored rock was obtained by slipping model.Furthermore,bolt energy-absorbing mechanism by instantaneous tensile-shear deformation was expressed based on material mechanics,which was the larger the anchoring angle,the smaller the energy absorption,and the less the contribution to supporting efficiency improvement.On this basis,the functional relationship between energy dissipation of anchored rock and energy absorption of bolt was established.Taking the coal-gangue separation system of Longgu coal mine as an example,the optimal anchoring angle can be determined as 57.5°–67.5°.Field monitoring showed fissured rock with the optimal anchoring angle,can not only effectively control the deformation,but also fully exert the energy-absorbing and efficiency-improving effect of bolt itself.This study provides guidance to the stability control and supporting design for deep engineering under the same or similar conditions.
基金Funded by the“Investigation and Evaluation of the Hot Dry Rock Resources in the Guide-Dalianhai Area of the Gonghe Basin,Qinghai”(DD20211336,DD20211337,DD20211338)“Hot Dry Rock Resources Exploration and Production Demonstration Project”(DD20230018)of the China Geological Survey。
文摘The Hot Dry Rock(HDR)is considered as a clean and renewable energy,poised to significantly contribute to the global energy decarbonization agenda.Many HDR projects worldwide have accumulated valuable experience in efficient drilling and completion,reservoir construction,and fracture simulation.In 2019,China Geological Survey(CGS)initiated a demonstration project of HDR exploration and production in the Gonghe Basin,aiming to overcome the setbacks faced by HDR projects.Over the ensuing four years,the Gonghe HDR project achieved the first power generation in 2021,followed by the second power generation test in 2022.After establishing the primary well group in the initial phase,two directional wells and one branch well were drilled.Noteworthy progress was made in successfully constructing the targeted reservoir,realizing inter-well connectivity,power generation and grid connection,implementing of the real-time micro-seismic monitoring.A closed-loop technical validation of the HDR exploration and production was completed.However,many technical challenges remain in the process of HDR industrialization,such as reservoir fracture network characterization,efficient drilling and completion,multiple fracturing treatment,continuous injection and production,as well as mitigation of induced seismicity and numerical simulation technology.
基金the National Natural Science Foundation of China(Grant No.41827806)and the Liaoning Revitalization Talent Program(Grant No.XLYC1801002).
文摘This study introduces a test system for microwave-induced fracturing of hard rocks under true triaxial stress.The test system comprises a true triaxial stress loading system,an open-ended microwaveinduced fracturing system,a data acquisition system,an acoustic emission(AE)monitoring system,and an auxiliary specimen loading system.Microwave-induced surface and borehole fracturing tests under true triaxial stress were fulfilled for the first time,which overcomes the problem of microwave leakage in the coupling loading of true triaxial stress and microwave.By developing the dynamic monitoring system,the thermal response and fracture evolution were obtained during microwave irradiation.The monitoring system includes the infrared thermometry technique for monitoring rock surface temperature,the distributed optic fiber sensing technique for monitoring temperature in borehole in rock,the AE technique and two-dimensional digital speckle correlation technique for monitoring the evolution of thermal damage and the rock fracturing process.To validate the advantages of the test system and investigate the characteristics of microwave-induced fracturing of hard rocks,the study demonstrates the experimental methods and results for microwave-induced surface and borehole fracturing under true triaxial stress.The results show that thermal cracking presented intermittent characteristics(calm eactiveecalm)during microwave-induced surface and borehole fracturing of basalt.In addition,true triaxial stress can inhibit the development and distribution of thermal cracks during microwave-induced surface fracturing.When microwave-induced borehole fracturing occurs,it promotes the distribution of thermal cracks in rock,but inhibits the width of cracks.The results also prove the reliability of the test system.
基金The authors are grateful to the financial support from the National Natural Science Foundation of China(Grant No.41831290)the Key R&D Project from Zhejiang Province,China(Grant No.2020C03092).
文摘To efficiently link the continuum mechanics for rocks with the structural statistics of rock masses,a theoretical and methodological system called the statistical mechanics of rock masses(SMRM)was developed in the past three decades.In SMRM,equivalent continuum models of stressestrain relationship,strength and failure probability for jointed rock masses were established,which were based on the geometric probability models characterising the rock mass structure.This follows the statistical physics,the continuum mechanics,the fracture mechanics and the weakest link hypothesis.A general constitutive model and complete stressestrain models under compressive and shear conditions were also developed as the derivatives of the SMRM theory.An SMRM calculation system was then developed to provide fast and precise solutions for parameter estimations of rock masses,such as full-direction rock quality designation(RQD),elastic modulus,Coulomb compressive strength,rock mass quality rating,and Poisson’s ratio and shear strength.The constitutive equations involved in SMRM were integrated into a FLAC3D based numerical module to apply for engineering rock masses.It is also capable of analysing the complete deformation of rock masses and active reinforcement of engineering rock masses.Examples of engineering applications of SMRM were presented,including a rock mass at QBT hydropower station in northwestern China,a dam slope of Zongo II hydropower station in D.R.Congo,an open-pit mine in Dexing,China,an underground powerhouse of Jinping I hydropower station in southwestern China,and a typical circular tunnel in Lanzhou-Chongqing railway,China.These applications verified the reliability of the SMRM and demonstrated its applicability to broad engineering issues associated with jointed rock masses.
文摘This paper attempts to provide an overview of risk assessment and management practice in underground rock engineering based on a review of the international literature and some personal experience. It is noted that the terminologies used in risk assessment and management studies may vary from country to country. Probabilistic risk analysis is probably the most widely-used approach to risk assessment in rock engineering and in geotechnical engineering more broadly. It is concluded that great potential exists to augment the existing probabilistic methods by the use of Bayesian networks and decision analysis techniques to allow reasoning under uncertainty and to update probabilities, material properties and analyses as further data become available throughout the various stages of a project. Examples are given of the use of these methods in underground excavation engineering in China and elsewhere, and opportunities for their further application are identified.
文摘The invaluable book reports the outcome of the work of the Commission on Design Methodology of the International Society for Rock Mechanics (ISRM) in the ISRM's 2011-2015 term of office during which Professor John Hudson acted as Commission Presi- dent while Professor Xia-Ting Feng served as ISRM President. It pro- vides a sequel to the authors' previous book, Rock Engineering Design (Feng and Hudson, 2011), which reported the work of the Commission in the ISRM's 2007-2011 term of office when Profes- sor Feng acted as Commission President and Professor Hudson served as ISRM President. It is also the first volume in the newly established ISRM Book Series published by CRC Press/Balkema of the Taylor & Francis Group, an initiative taken during Professor Feng's recent term of office as ISRM President.
文摘Post failure rheology, as an important deformable behavior of average to very poor rockmass,is discussed in this paper. Three kinds of deformations, transition deformation, post failure rheological deformation and swelling deformation, are also introduced for they are totally different from that of traditional concepts. Transition and post failure deformations are sensitive to the environmental factors, and need to be studied in the future.