Geological environments of rock mass projects are always very complicated, and further investigations on rock mechanical characteristics are needed. There are considerable distinctions in rock mechanical characteristi...Geological environments of rock mass projects are always very complicated, and further investigations on rock mechanical characteristics are needed. There are considerable distinctions in rock mechanical characteristics under unloading and loading conditions. A series of tests are conducted to study the stress-strain relationship of rock masses under loading and unloading conditions. Also, the anisotropy, the size effect, and the rheological property of unloading rock mass are investigated. The tests presented in the paper include model test and granite rheological test, which are conducted considering geological condition, rock mass structure, in-situ stress field of the permanent shiplock of the Three Gorges Project. The main differences between loading and unloading rock masses are stress paths, yield criteria, deformation and strength parameters, etc.. Different structural plane directions affect unloading rock mass evidently. With increasing size, the tensile strength, the compressive strength, the deformation modulus, the Poisson’s ratio and the anisotropy of rock mass all decrease. For sandstone samples with parallel bedding planes, the cohesion c increases but the internal friction angle ? decreases under unloading condition when compared with the values under loading condition. While for samples with vertical bedding planes, the trend is adverse. The rheological property of rocks has close relationship with the tensile stresses of rock masses. When the sandstone samples are tested under high stress condition, their rheological properties are very obvious with the unloading of confining pressure, and three typical rheological stages are shown. Rheological rate changes with the variations in axial stress and confining pressure.展开更多
Unloading failure of rocks,especially highly stressed rocks,is one of the key issues in construction of underground structures.Based on this,analytical models for rocks under quasi-static and intensive unloading condi...Unloading failure of rocks,especially highly stressed rocks,is one of the key issues in construction of underground structures.Based on this,analytical models for rocks under quasi-static and intensive unloading conditions are established to study the failure behavior of highly stressed rocks.In case of rock failure under quasi-static unloading,the rock mass ahead of working face is regarded as an elasto-brittle material,and the stress-displacement curves are used to characterize the tensile fracture of peak-stress area.It is observed that,when intensive unloading happens,there is an elastic unloading wave(perturbation wave) propagating in the rock mass.If the initial stress exceeds the critical stress,there will be a fracture wave,following the elastic unloading wave.To study the propagation feature of fracture wave,the conservation laws of mass,momentum and energy are employed.Results show that the post-peak deformation,strength and energy dissipation are essential to the failure process of highly stressed rocks.展开更多
The damage-fracture evolution of deep rock mass has obvious particularity,which is revealed in 2400-mdeep tunnels by field tests.The evolution of the excavation damaged zone depth is consistent with that of the fractu...The damage-fracture evolution of deep rock mass has obvious particularity,which is revealed in 2400-mdeep tunnels by field tests.The evolution of the excavation damaged zone depth is consistent with that of the fractured zone depth.The ratio of the excavation damaged zone depth to the excavation fractured zone depth is greater than 2.0 in a rock mass with both high strength and good integrity,but less than1.5 in a rock mass with lower strength or poor integrity.Zonal disintegration in a rock mass with high strength and fair integrity is more likely to occur when it contains more than two groups of primary fractures in damaged zones.Fractures develop outward in zonal disintegration but are totally different from the single-zone fracture,in which the fractures develop inward,and it is the starting position of the fractured zone when the excavation surface of the middle pilot is 7–9 m close to the pre-set borehole and it stops after the excavation surface of the baseplate is 11–14 m away.The most intense evolution occurs around 2–4 m from the pre-set borehole in the sidewall expansion stage.The research results provide a reference for the monitoring scheme and support design of CJPL-Ⅲin its future construction.展开更多
基金Supported by the National Natural Science Foundation of China (90610029, 50679079, 50909052)
文摘Geological environments of rock mass projects are always very complicated, and further investigations on rock mechanical characteristics are needed. There are considerable distinctions in rock mechanical characteristics under unloading and loading conditions. A series of tests are conducted to study the stress-strain relationship of rock masses under loading and unloading conditions. Also, the anisotropy, the size effect, and the rheological property of unloading rock mass are investigated. The tests presented in the paper include model test and granite rheological test, which are conducted considering geological condition, rock mass structure, in-situ stress field of the permanent shiplock of the Three Gorges Project. The main differences between loading and unloading rock masses are stress paths, yield criteria, deformation and strength parameters, etc.. Different structural plane directions affect unloading rock mass evidently. With increasing size, the tensile strength, the compressive strength, the deformation modulus, the Poisson’s ratio and the anisotropy of rock mass all decrease. For sandstone samples with parallel bedding planes, the cohesion c increases but the internal friction angle ? decreases under unloading condition when compared with the values under loading condition. While for samples with vertical bedding planes, the trend is adverse. The rheological property of rocks has close relationship with the tensile stresses of rock masses. When the sandstone samples are tested under high stress condition, their rheological properties are very obvious with the unloading of confining pressure, and three typical rheological stages are shown. Rheological rate changes with the variations in axial stress and confining pressure.
基金sponsored by the National Science Fund for Distinguished Young Scholars(50825403)the National Key Basic Research Program of China(2010CB732003,2013CB036005)the Science Fund for Creative Research Group of the National Natural Science Foundation of China(51021001)
文摘Unloading failure of rocks,especially highly stressed rocks,is one of the key issues in construction of underground structures.Based on this,analytical models for rocks under quasi-static and intensive unloading conditions are established to study the failure behavior of highly stressed rocks.In case of rock failure under quasi-static unloading,the rock mass ahead of working face is regarded as an elasto-brittle material,and the stress-displacement curves are used to characterize the tensile fracture of peak-stress area.It is observed that,when intensive unloading happens,there is an elastic unloading wave(perturbation wave) propagating in the rock mass.If the initial stress exceeds the critical stress,there will be a fracture wave,following the elastic unloading wave.To study the propagation feature of fracture wave,the conservation laws of mass,momentum and energy are employed.Results show that the post-peak deformation,strength and energy dissipation are essential to the failure process of highly stressed rocks.
基金supported by the National Natural Science Foundation of China(Nos.51909136 and 42177168)Project of Youth Inno vation Promotion Association of Chinese Academy of Sciences(No.2021326)the Open Research Fund of Key Laboratory of Geological Hazards on Three Gorges Reservoir Area(China Three Gorges University),Ministry of Education(No.2020KDZ03)。
文摘The damage-fracture evolution of deep rock mass has obvious particularity,which is revealed in 2400-mdeep tunnels by field tests.The evolution of the excavation damaged zone depth is consistent with that of the fractured zone depth.The ratio of the excavation damaged zone depth to the excavation fractured zone depth is greater than 2.0 in a rock mass with both high strength and good integrity,but less than1.5 in a rock mass with lower strength or poor integrity.Zonal disintegration in a rock mass with high strength and fair integrity is more likely to occur when it contains more than two groups of primary fractures in damaged zones.Fractures develop outward in zonal disintegration but are totally different from the single-zone fracture,in which the fractures develop inward,and it is the starting position of the fractured zone when the excavation surface of the middle pilot is 7–9 m close to the pre-set borehole and it stops after the excavation surface of the baseplate is 11–14 m away.The most intense evolution occurs around 2–4 m from the pre-set borehole in the sidewall expansion stage.The research results provide a reference for the monitoring scheme and support design of CJPL-Ⅲin its future construction.