期刊文献+
共找到235,956篇文章
< 1 2 250 >
每页显示 20 50 100
A damage constitutive model of rock-like materials containing a single crack under the action of chemical corrosion and uniaxial compression 被引量:10
1
作者 PAN Ji-liang CAI Mei-feng +1 位作者 LI Peng GUO Qi-feng 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第2期486-498,共13页
To describe the deformation and strength characteristics of the corroded rock-like specimens containing a single crack under uniaxial compression,a damage constitutive model combining hydro-chemical damage with coupli... To describe the deformation and strength characteristics of the corroded rock-like specimens containing a single crack under uniaxial compression,a damage constitutive model combining hydro-chemical damage with coupling damage of micro-flaws and macro-cracks is proposed.Firstly,based on phenomenological theory,the damage variable of the rock-like specimens subjected to water environment erosion and chemical corrosion is obtained.Secondly,a coupled damage variable for cracked rock-like specimens is derived based on the Lemaitre strain equivalence hypothesis,which combines the Weibull statistical damage model for micro-flaws and the fracture mechanics model for a macro single crack.Then,considering the residual strength characteristics of the rock-like materials,the damage variable is modified by introducing the correction coefficient,and the damage constitutive model of the corroded rock-like specimens with a single crack under uniaxial compression is established.The model is verified by comparing the experimental stress−strain curves,and the results are in good agreement with those provided in the literature.Finally,the correction coefficient of the damage variable proposed in this paper is discussed.The damage constitutive model developed in this paper provides an effective method to describe the stress−strain relationship and residual strength characteristics of the corroded rock-like specimens with a single crack under uniaxial compression. 展开更多
关键词 rock-like material single-cracked rock damage constitutive model hydro-chemical erosion residual strength damage variable
下载PDF
Failure characteristics and its influencing factors of rock-like material with multi-fissures under uniaxial compression 被引量:10
2
作者 PU Cheng-zhi CAO Ping 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第1期185-191,共7页
The compression test on rock-like specimens with prefabricated closed multi-fissures made by pulling out the embedded metal inserts in the precured period was done on the servo control uniaxial loading instrument. The... The compression test on rock-like specimens with prefabricated closed multi-fissures made by pulling out the embedded metal inserts in the precured period was done on the servo control uniaxial loading instrument. The influence of fissure inclination angle and distribution density on the failure characteristics of fissure bodies was researched. It was found that, the fissure inclination angle was the major influencing factor on the failure modes of fissure bodies. The different developmental states of micro-cracks would appear on specimens under different fissure inclination angles. However, the influence of fissure distribution density on the failure mode of fissure bodies was achieved by influencing the transfixion pattern of fissures. It was shown by the sliding crack model that, the effective shear, which drove the relative sliding of the fissure, was a function of fissure inclination angle and friction coefficient of the fissure surface. The strain-softening model of fissure bodies was established based on the mechanical parameters that were obtained by the test of rock-like materials under the same experimental condition. And the reliability of experimental results was identified by using this model. 展开更多
关键词 rock-like material prefabricated fissure uniaxial compression sliding crack model strain-softening model
下载PDF
An experimental study on fracture mechanical behavior of rock-like materials containing two unparallel fissures under uniaxial compression 被引量:8
3
作者 Yan-Hua Huang Sheng-Qi Yang +2 位作者 Wen-Ling Tian Wei Zeng Li-Yuan Yu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第3期442-455,共14页
Strength and deformability characteristics of rock with pre-existing fissures are governed by cracking behavior. To further research the effects of pre-existing fissures on the mechanical properties and crack coalesce... Strength and deformability characteristics of rock with pre-existing fissures are governed by cracking behavior. To further research the effects of pre-existing fissures on the mechanical properties and crack coalescence process, a series of uniaxial compression tests were carried out for rock-like material with two unparallel fissures.In the present study, cement, quartz sand, and water were used to fabricate a kind of brittle rock-like material cylindrical model specimen. The mechanical properties of rock-like material specimen used in this research were all in good agreement with the brittle rock materials. Two unparallel fissures(a horizontal fissure and an inclined fissure) were created by inserting steel during molding the model specimen.Then all the pre-fissured rock-like specimens were tested under uniaxial compression by a rock mechanics servocontrolled testing system. The peak strength and Young's modulus of pre-fissured specimen all first decreased and then increased when the fissure angle increased from 0?to 75?.In order to investigate the crack initiation, propagation and coalescence process, photographic monitoring was adopted to capture images during the entire deformation process.Moreover, acoustic emission(AE) monitoring technique was also used to obtain the AE evolution characteristic of prefissured specimen. The relationship between axial stress, AE events, and the crack coalescence process was set up: when a new crack was initiated or a crack coalescence occurred, thecorresponding axial stress dropped in the axial stress–time curve and a big AE event could be observed simultaneously.Finally, the mechanism of crack propagation under microscopic observation was discussed. These experimental results are expected to increase the understanding of the strength failure behavior and the cracking mechanism of rock containing unparallel fissures. 展开更多
关键词 rock-like material Two unparallel fissures Mechanical parameters Crack evolution Acoustic emission(AE)
下载PDF
Mechanism of stress distribution and failure around two different shapes of openings within fractured rock-like materials 被引量:1
4
作者 FAN Xiang YANG Zhi-jun +2 位作者 HONG Ming YU Hao XIE Yong-li 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第6期1916-1932,共17页
The complexity of a rock masses structure can lead to high uncertainties and risk during underground engineering construction.Laboratory tests on fractured rock-like materials containing a tunnel were conducted,and tw... The complexity of a rock masses structure can lead to high uncertainties and risk during underground engineering construction.Laboratory tests on fractured rock-like materials containing a tunnel were conducted,and twodimensional particle flow models were established.The principal stress and principal strain distributions surrounding the four-arc-shaped and inverted U-shaped tunnels were investigated,respectively.Numerical results indicated that the dip angle combination of preexisting fractures directly affects the principal stress,principal strain distribution and the failure characteristics around the tunnel.The larger the absolute value of the preexisting fracture inclination angle,the higher the crushing degree of compression splitting near the hance and the larger the V-shaped failure zone.With a decrease in the absolute value of the preexisting fracture inclination angle,the compressive stress concentration of the sidewall with preexisting fractures gradually increases.The types of cracks initiated around the four-arc-shaped tunnel and the inverted U-shape tunnel are different.When the fractures are almost vertical,they have a significant influence on the stress of the sidewall force of the four-arc-shaped tunnel.When the fractures are almost horizontal,they have a significant influence on the stress of the sidewall of the inverted U-shaped tunnel.The findings provide a theoretical support for the local strengthening design of the tunnel supporting structure. 展开更多
关键词 TUNNEL fractured rock-like material 2D particle flow code crack initiation stress distribution
下载PDF
Experimental study of polyurethane foam reinforced soil used as a rock-like material 被引量:1
5
作者 Eren Komurlu Ayhan Kesimal 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2015年第5期566-572,共7页
In this study, p o ly u reth an e foam ty p e th e rm o se t polym erizing, d u e to chem ical reaction b e tw e e n itsliquid ingredients, w as teste d as b in d e r afte r solidifying and th e n a rock-like m ateria... In this study, p o ly u reth an e foam ty p e th e rm o se t polym erizing, d u e to chem ical reaction b e tw e e n itsliquid ingredients, w as teste d as b in d e r afte r solidifying and th e n a rock-like m aterial m ixing w ith asandy silt ty p e soil w as prep ared . The uniaxial com pressive stren g th s (UCSs) o f p o ly u reth an e foamreinforced soil specim ens w ere d e term in ed for different p o ly u reth an e ratios in th e m ixture. A dditionally,a series o f te sts o n slake durability, im pact value, freezing-th aw in g resistance, and ab rasio n resistance ofp o ly u reth an e reinforced soil (PRS) m ix tu re w as co n d u cted . The UCS values over 3 M Pa w ere m easuredfrom th e PRS specim ens. The testin g results show ed th a t tre a te d soil can econom ically b ecom e adesirable rock-like m aterial in term s o f slake d u ra b ility a n d resistances ag ain st freezing-thaw ing, im pacteffect an d abrasion. As a n o th e r ch aracteristic o f th e rock-like m aterial m ade w ith p o ly u reth an e foam,u n it volum e w eig h t w as found to be q uite low er th a n th o se o f n atu ral rock m aterials. 展开更多
关键词 Polyurethane reinforced soil(PRS) rock-like material POLYURETHANE Environmental resistance of rocks Rock testing
下载PDF
STUDY ON DAMAGE BIFURCATION AND INSTABILITY OF ROCK-LIKE MATERIALS 被引量:1
6
作者 Luan Maotian Wang Zhongchang Yang Qing 《Acta Mechanica Solida Sinica》 SCIE EI 2006年第3期275-282,共8页
The critical bifurcation orientation and its corresponding hardening modulus for rock-like geomaterials are derived by considering the effect of stiffness degradation and volumetric dilatancy under the assumption of i... The critical bifurcation orientation and its corresponding hardening modulus for rock-like geomaterials are derived by considering the effect of stiffness degradation and volumetric dilatancy under the assumption of isotropic damage. The dependency of the localized orientation on the degree of damage and initial Poisson's ratio of rock is examined and the bifurcation behavior of the uniaxial compression sample under the plane-stress condition is compared with that under plane-strain condition. It is shown that the localization orientation angle intimately depends on both the initial Poisson's ratio and degree of damage for the rock sample under the uniaxial compression condition. As the initial Poisson's ratio or degree of damage increases, the orientation angle of the plane on which localization tends to be initiated gets to decrease. At the same time, the localization orientation angle of a rock sample under the plane-stress condition is larger than that under the plane-strain condition. 展开更多
关键词 damage degradation maximum hardening modulus BIFURCATION orientation of localization rock-like materials
下载PDF
Non-parallel double-crack propagation in rock-like materials under uniaxial compression 被引量:4
7
作者 Weidong Pan Xin Wang +2 位作者 Qiming Liu Yongkang Yuan Baodong Zuo 《International Journal of Coal Science & Technology》 EI 2019年第3期372-387,共16页
Coalescence among fractures would have influence on the stability of rock masses. Deep understanding of mechanical behavior of fractured rock masses is an important mean to identify failure mechanism of geological dis... Coalescence among fractures would have influence on the stability of rock masses. Deep understanding of mechanical behavior of fractured rock masses is an important mean to identify failure mechanism of geological disaster. In this study, crack propagation processing was studied through loading pre-fractured specimens of concrete block, termed as rock-like material, in uniaxial compression tests. New non-parallel double-crack geometry was introduced to observe crack coalescence. The flaw combinations are different from the normally used flaw configurations. In addition, ultrasonic detection tests were performed on the test blocks. The stress and strain data of these tests and characteristic parameters of sound wave were recorded. The stress-strain curves of each test block under the uniaxial compression test were drawn, relations among deformation characteristics and crack angle of the crack specimens, and their overall strength were analyzed. It is found that strength of the specimen decreases as crack inclination increases under two crack inclinations. The highest uniaxial compressive strength is found in the specimen with the cracks at the same angle in different directions. Based on description of the crack initiation location, crack surface and the ultimate failure patterns, failure modes of eight subtype for test blocks are divided into three categories. It is expected that the study results could be beneficial for engineering application of jointed rock masses. 展开更多
关键词 rock-like material Non-parallel DOUBLE cracks CRACK-PROPAGATION path UNIAXIAL compression test
下载PDF
Application of the expanded distinct element method for the study of crack growth in rock-like materials under uniaxial compression 被引量:5
8
作者 Lei YANG Yujing JIANG +2 位作者 Bo LI Shucai LI Yang GAO 《Frontiers of Structural and Civil Engineering》 SCIE EI 2012年第2期121-131,共11页
The expanded distinct element method(EDEM)was used to investigate the crack growth in rock-like materials under uniaxial compression.The tensile-shear failure criterion and the Griffith failure criterion were implante... The expanded distinct element method(EDEM)was used to investigate the crack growth in rock-like materials under uniaxial compression.The tensile-shear failure criterion and the Griffith failure criterion were implanted into the EDEM to determine the initiation and propagation of pre-existing cracks,respectively.Uniaxial compression experiments were also performed with the artificial rock-like samples to verify the validity of the EDEM.Simulation results indicated that the EDEM model with the tensile-shear failure criterion has strong capabilities for modeling the growth of pre-existing cracks,and model results have strong agreement with the failure and mechanical properties of experimental samples.The EDEM model with the Griffith failure criterion can only simulate the splitting failure of samples due to tensile stresses and is incapable of providing a comprehensive interpretation for the overall failure of rock masses.Research results demonstrated that sample failure primarily resulted from the growth of single cracks(in the form of tensile wing cracks and shear secondary cracks)and the coalescence of two cracks due to the growth of wing cracks in the rock bridge zone.Additionally,the inclination angle of the pre-existing crack clearly influences the final failure pattern of the samples. 展开更多
关键词 expanded distinct element method(EDEM) crack growth rock-like material tensile-shear failure criterion Griffith failure criterion mechanical and failure behavior
原文传递
The Roadmap of 2D Materials and Devices Toward Chips 被引量:3
9
作者 Anhan Liu Xiaowei Zhang +16 位作者 Ziyu Liu Yuning Li Xueyang Peng Xin Li Yue Qin Chen Hu Yanqing Qiu Han Jiang Yang Wang Yifan Li Jun Tang Jun Liu Hao Guo Tao Deng Songang Peng He Tian Tian‑Ling Ren 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期343-438,共96页
Due to the constraints imposed by physical effects and performance degra certain limitations in sustaining the advancement of Moore’s law.Two-dimensional(2D)materials have emerged as highly promising candidates for t... Due to the constraints imposed by physical effects and performance degra certain limitations in sustaining the advancement of Moore’s law.Two-dimensional(2D)materials have emerged as highly promising candidates for the post-Moore era,offering significant potential in domains such as integrated circuits and next-generation computing.Here,in this review,the progress of 2D semiconductors in process engineering and various electronic applications are summarized.A careful introduction of material synthesis,transistor engineering focused on device configuration,dielectric engineering,contact engineering,and material integration are given first.Then 2D transistors for certain electronic applications including digital and analog circuits,heterogeneous integration chips,and sensing circuits are discussed.Moreover,several promising applications(artificial intelligence chips and quantum chips)based on specific mechanism devices are introduced.Finally,the challenges for 2D materials encountered in achieving circuit-level or system-level applications are analyzed,and potential development pathways or roadmaps are further speculated and outlooked. 展开更多
关键词 Two-dimensional materials ROADMAP Integrated circuits Post-Moore era
下载PDF
Structural Engineering of Anode Materials for Low-Temperature Lithium-Ion Batteries:Mechanisms,Strategies,and Prospects 被引量:2
10
作者 Guan Wang Guixin Wang +2 位作者 Linfeng Fei Lina Zhao Haitao Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期169-195,共27页
The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contribut... The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contributed to explore novel anode materials with high electronic conductivity and rapid Li^(+)diffusion kinetics for achieving favorable low-temperature performance of LIBs.Herein,we try to review the recent reports on the synthesis and characterizations of low-temperature anode materials.First,we summarize the underlying mechanisms responsible for the performance degradation of anode materials at subzero temperatures.Second,detailed discussions concerning the key pathways(boosting electronic conductivity,enhancing Li^(+)diffusion kinetics,and inhibiting lithium dendrite)for improving the low-temperature performance of anode materials are presented.Third,several commonly used low-temperature anode materials are briefly introduced.Fourth,recent progress in the engineering of these low-temperature anode materials is summarized in terms of structural design,morphology control,surface&interface modifications,and multiphase materials.Finally,the challenges that remain to be solved in the field of low-temperature anode materials are discussed.This review was organized to offer valuable insights and guidance for next-generation LIBs with excellent low-temperature electrochemical performance. 展开更多
关键词 Low-temperature performance Anode materials Microstructural regulations Surface modifications
下载PDF
Deformable Catalytic Material Derived from Mechanical Flexibility for Hydrogen Evolution Reaction 被引量:2
11
作者 Fengshun Wang Lingbin Xie +7 位作者 Ning Sun Ting Zhi Mengyang Zhang Yang Liu Zhongzhong Luo Lanhua Yi Qiang Zhao Longlu Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期287-311,共25页
Deformable catalytic material with excellent flexible structure is a new type of catalyst that has been applied in various chemical reactions,especially electrocatalytic hydrogen evolution reaction(HER).In recent year... Deformable catalytic material with excellent flexible structure is a new type of catalyst that has been applied in various chemical reactions,especially electrocatalytic hydrogen evolution reaction(HER).In recent years,deformable catalysts for HER have made great progress and would become a research hotspot.The catalytic activities of deformable catalysts could be adjustable by the strain engineering and surface reconfiguration.The surface curvature of flexible catalytic materials is closely related to the electrocatalytic HER properties.Here,firstly,we systematically summarized self-adaptive catalytic performance of deformable catalysts and various micro–nanostructures evolution in catalytic HER process.Secondly,a series of strategies to design highly active catalysts based on the mechanical flexibility of lowdimensional nanomaterials were summarized.Last but not least,we presented the challenges and prospects of the study of flexible and deformable micro–nanostructures of electrocatalysts,which would further deepen the understanding of catalytic mechanisms of deformable HER catalyst. 展开更多
关键词 Deformable catalytic material Micro-nanostructures evolution Mechanical flexibility Hydrogen evolution reaction
下载PDF
Nontraditional energy-assisted mechanical machining of difficult-to-cut materials and components in aerospace community:a comparative analysis 被引量:2
12
作者 Guolong Zhao Biao Zhao +5 位作者 Wenfeng Ding Lianjia Xin Zhiwen Nian Jianhao Peng Ning He Jiuhua Xu 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期190-271,共82页
The aerospace community widely uses difficult-to-cut materials,such as titanium alloys,high-temperature alloys,metal/ceramic/polymer matrix composites,hard and brittle materials,and geometrically complex components,su... The aerospace community widely uses difficult-to-cut materials,such as titanium alloys,high-temperature alloys,metal/ceramic/polymer matrix composites,hard and brittle materials,and geometrically complex components,such as thin-walled structures,microchannels,and complex surfaces.Mechanical machining is the main material removal process for the vast majority of aerospace components.However,many problems exist,including severe and rapid tool wear,low machining efficiency,and poor surface integrity.Nontraditional energy-assisted mechanical machining is a hybrid process that uses nontraditional energies(vibration,laser,electricity,etc)to improve the machinability of local materials and decrease the burden of mechanical machining.This provides a feasible and promising method to improve the material removal rate and surface quality,reduce process forces,and prolong tool life.However,systematic reviews of this technology are lacking with respect to the current research status and development direction.This paper reviews the recent progress in the nontraditional energy-assisted mechanical machining of difficult-to-cut materials and components in the aerospace community.In addition,this paper focuses on the processing principles,material responses under nontraditional energy,resultant forces and temperatures,material removal mechanisms,and applications of these processes,including vibration-,laser-,electric-,magnetic-,chemical-,advanced coolant-,and hybrid nontraditional energy-assisted mechanical machining.Finally,a comprehensive summary of the principles,advantages,and limitations of each hybrid process is provided,and future perspectives on forward design,device development,and sustainability of nontraditional energy-assisted mechanical machining processes are discussed. 展开更多
关键词 difficult-to-cut materials geometrically complex components nontraditional energy mechanical machining aerospace community
下载PDF
Recent Advances in In-Memory Computing:Exploring Memristor and Memtransistor Arrays with 2D Materials 被引量:1
13
作者 Hangbo Zhou Sifan Li +1 位作者 Kah-Wee Ang Yong-Wei Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期1-30,共30页
The conventional computing architecture faces substantial chal-lenges,including high latency and energy consumption between memory and processing units.In response,in-memory computing has emerged as a promising altern... The conventional computing architecture faces substantial chal-lenges,including high latency and energy consumption between memory and processing units.In response,in-memory computing has emerged as a promising alternative architecture,enabling computing operations within memory arrays to overcome these limitations.Memristive devices have gained significant attention as key components for in-memory computing due to their high-density arrays,rapid response times,and ability to emulate biological synapses.Among these devices,two-dimensional(2D)material-based memristor and memtransistor arrays have emerged as particularly promising candidates for next-generation in-memory computing,thanks to their exceptional performance driven by the unique properties of 2D materials,such as layered structures,mechanical flexibility,and the capability to form heterojunctions.This review delves into the state-of-the-art research on 2D material-based memristive arrays,encompassing critical aspects such as material selection,device perfor-mance metrics,array structures,and potential applications.Furthermore,it provides a comprehensive overview of the current challenges and limitations associated with these arrays,along with potential solutions.The primary objective of this review is to serve as a significant milestone in realizing next-generation in-memory computing utilizing 2D materials and bridge the gap from single-device characterization to array-level and system-level implementations of neuromorphic computing,leveraging the potential of 2D material-based memristive devices. 展开更多
关键词 2D materials MEMRISTORS Memtransistors Crossbar array In-memory computing
下载PDF
Biomaterials and tissue engineering in traumatic brain injury:novel perspectives on promoting neural regeneration 被引量:2
14
作者 Shihong Zhu Xiaoyin Liu +7 位作者 Xiyue Lu Qiang Liao Huiyang Luo Yuan Tian Xu Cheng Yaxin Jiang Guangdi Liu Jing Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第10期2157-2174,共18页
Traumatic brain injury is a serious medical condition that can be attributed to falls, motor vehicle accidents, sports injuries and acts of violence, causing a series of neural injuries and neuropsychiatric symptoms. ... Traumatic brain injury is a serious medical condition that can be attributed to falls, motor vehicle accidents, sports injuries and acts of violence, causing a series of neural injuries and neuropsychiatric symptoms. However, limited accessibility to the injury sites, complicated histological and anatomical structure, intricate cellular and extracellular milieu, lack of regenerative capacity in the native cells, vast variety of damage routes, and the insufficient time available for treatment have restricted the widespread application of several therapeutic methods in cases of central nervous system injury. Tissue engineering and regenerative medicine have emerged as innovative approaches in the field of nerve regeneration. By combining biomaterials, stem cells, and growth factors, these approaches have provided a platform for developing effective treatments for neural injuries, which can offer the potential to restore neural function, improve patient outcomes, and reduce the need for drugs and invasive surgical procedures. Biomaterials have shown advantages in promoting neural development, inhibiting glial scar formation, and providing a suitable biomimetic neural microenvironment, which makes their application promising in the field of neural regeneration. For instance, bioactive scaffolds loaded with stem cells can provide a biocompatible and biodegradable milieu. Furthermore, stem cells-derived exosomes combine the advantages of stem cells, avoid the risk of immune rejection, cooperate with biomaterials to enhance their biological functions, and exert stable functions, thereby inducing angiogenesis and neural regeneration in patients with traumatic brain injury and promoting the recovery of brain function. Unfortunately, biomaterials have shown positive effects in the laboratory, but when similar materials are used in clinical studies of human central nervous system regeneration, their efficacy is unsatisfactory. Here, we review the characteristics and properties of various bioactive materials, followed by the introduction of applications based on biochemistry and cell molecules, and discuss the emerging role of biomaterials in promoting neural regeneration. Further, we summarize the adaptive biomaterials infused with exosomes produced from stem cells and stem cells themselves for the treatment of traumatic brain injury. Finally, we present the main limitations of biomaterials for the treatment of traumatic brain injury and offer insights into their future potential. 展开更多
关键词 bioactive materials BIOmaterialS EXOSOMES neural regeneration scaffolds stem cells tissue engineering traumatic brain injury
下载PDF
Recent advances in transition metal phosphide materials:Synthesis and applications in supercapacitors 被引量:1
15
作者 Ge Li Yu Feng +3 位作者 Yi Yang Xiaoliang Wu Xiumei Song Lichao Tan 《Nano Materials Science》 EI CAS CSCD 2024年第2期174-192,共19页
Supercapacitors(SCs)are considered promising energy storge systems because of their outstanding power density,fast charge and discharge rate and long-term cycling stability.The exploitation of cheap and efficient elec... Supercapacitors(SCs)are considered promising energy storge systems because of their outstanding power density,fast charge and discharge rate and long-term cycling stability.The exploitation of cheap and efficient electrode materials is the key to improve the performance of supercapacitors.As the battery-type materials,transition metal phosphides(TMPs)possess high theoretical specific capacity,good electrical conductivity and superior structural stability,which have been extensively studied to be electrode materials for supercapacitors.In this review,we summarize the up-to-date progress on TMPs materials from diversified synthetic methods,diverse nanostructures and several prominent TMPs and their composites in application of supercapacitors.In the end,we also propose the remaining challenges toward the rational discovery and synthesis of high-performance TMP electrodes materials for energy storage. 展开更多
关键词 Transition metal phosphides Cobalt phosphide Nickel phosphides Electrode materials SUPERCAPACITOR
下载PDF
人工智能背景下Materials Project数据库在计算材料学课程教学中的应用
16
作者 胡学敏 孙孪鸿 +1 位作者 陈晓玉 叶原丰 《科教文汇》 2024年第10期90-94,共5页
该文探讨了在人工智能背景下,Materials Project数据库在计算材料学课程教学中的应用和影响。Materials Project数据库是一个集成了AI和大数据技术的开放获取的材料库,能为学生提供海量的材料晶体结构和物性数据,使教学内容更为丰富,让... 该文探讨了在人工智能背景下,Materials Project数据库在计算材料学课程教学中的应用和影响。Materials Project数据库是一个集成了AI和大数据技术的开放获取的材料库,能为学生提供海量的材料晶体结构和物性数据,使教学内容更为丰富,让学生能通过亲自操作获取和分析数据,深入理解微观结构与物性之间的关系。这一新兴的教学模式不仅提升了学生的科研能力和创新思维能力,还有助于培养具备计算材料专业知识和多学科交叉的复合型人才。总体来说,人工智能时代下,大数据的引入为计算材料学课程带来新的活力,并对未来教育改革和实践产生了积极影响。 展开更多
关键词 人工智能 materials Project数据库 计算材料学教学
下载PDF
Synthesis and Modulation of Low-Dimensional Transition Metal Chalcogenide Materials via Atomic Substitution 被引量:1
17
作者 Xuan Wang Akang Chen +3 位作者 XinLei Wu Jiatao Zhang Jichen Dong Leining Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期49-94,共46页
In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterpart... In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterparts.The controllable synthesis and manipulation of these materials are crucial for tailoring their properties and unlocking their full potential in various applications.In this context,the atomic substitution method has emerged as a favorable approach.It involves the replacement of specific atoms within TMC structures with other elements and possesses the capability to regulate the compositions finely,crystal structures,and inherent properties of the resulting materials.In this review,we present a comprehensive overview on various strategies of atomic substitution employed in the synthesis of zero-dimensional,one-dimensional and two-dimensional TMC materials.The effects of substituting elements,substitution ratios,and substitution positions on the structures and morphologies of resulting material are discussed.The enhanced electrocatalytic performance and photovoltaic properties of the obtained materials are also provided,emphasizing the role of atomic substitution in achieving these advancements.Finally,challenges and future prospects in the field of atomic substitution for fabricating low-dimensional TMC materials are summarized. 展开更多
关键词 Transition metal chalcogenides Atomic substitution Ion exchange Low-dimensional materials Controllable synthesis
下载PDF
Enhanced structural damage behavior of liquid-filled tank by reactive material projectile impact 被引量:1
18
作者 Jianwen Xie Yuanfeng Zheng +4 位作者 Zhenyang Liu Chengzhe Liu Aoxin Liu Pengwan Chen Haifu Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期211-229,共19页
A series of ballistic experiments were performed to investigate the damage behavior of high velocity reactive material projectiles(RMPs) impacting liquid-filled tanks,and the corresponding hydrodynamic ram(HRAM) was s... A series of ballistic experiments were performed to investigate the damage behavior of high velocity reactive material projectiles(RMPs) impacting liquid-filled tanks,and the corresponding hydrodynamic ram(HRAM) was studied in detail.PTFE/Al/W RMPs with steel-like and aluminum-like densities were prepared by a pressing/sintering process.The projectiles impacted a liquid-filled steel tank with front aluminum panel at approximately 1250 m/s.The corresponding cavity evolution characteristics and HRAM pressure were recorded by high-speed camera and pressure acquisition system,and further compared to those of steel and aluminum projectiles.Significantly different from the conical cavity formed by the inert metal projectile,the cavity formed by the RMP appeared as an ellipsoid with a conical front.The RMPs were demonstrated to enhance the radial growth velocity of cavity,the global HRAM pressure amplitude and the front panel damage,indicating the enhanced HRAM and structural damage behavior.Furthermore,combining the impact-induced fragmentation and deflagration characteristics,the cavity evolution of RMPs under the combined effect of kinetic energy impact and chemical energy release was analyzed.The mechanism of enhanced HRAM pressure induced by the RMPs was further revealed based on the theoretical model of the initial impact wave and the impulse analysis.Finally,the linear correlation between the deformation-thickness ratio and the non-dimensional impulse for the front panel was obtained and analyzed.It was determined that the enhanced near-field impulse induced by the RMPs was the dominant reason for the enhanced structural damage behavior. 展开更多
关键词 Reactive material projectile Hydrodynamic ram Enhanced structural damage Liquid-filled tank Impact
下载PDF
Material point method simulation of hydro-mechanical behaviour in twophase porous geomaterials: A state-of-the-art review 被引量:1
19
作者 Xiangcou Zheng Shuying Wang +1 位作者 Feng Yang Junsheng Yang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2341-2350,共10页
The material point method(MPM)has been gaining increasing popularity as an appropriate approach to the solution of coupled hydro-mechanical problems involving large deformation.In this paper,we survey the current stat... The material point method(MPM)has been gaining increasing popularity as an appropriate approach to the solution of coupled hydro-mechanical problems involving large deformation.In this paper,we survey the current state-of-the-art in the MPM simulation of hydro-mechanical behaviour in two-phase porous geomaterials.The review covers the recent advances and developments in the MPM and their extensions to capture the coupled hydro-mechanical problems involving large deformations.The focus of this review is aiming at providing a clear picture of what has or has not been developed or implemented for simulating two-phase coupled large deformation problems,which will provide some direct reference for both practitioners and researchers. 展开更多
关键词 Coupled problems Hydro-mechanical behaviour Large deformation material Point Method(MPM)
下载PDF
Multi-Material Topology Optimization for Spatial-Varying Porous Structures 被引量:1
20
作者 Chengwan Zhang Kai Long +4 位作者 Zhuo Chen Xiaoyu Yang Feiyu Lu Jinhua Zhang Zunyi Duan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期369-390,共22页
This paper aims to propose a topology optimization method on generating porous structures comprising multiple materials.The mathematical optimization formulation is established under the constraints of individual volu... This paper aims to propose a topology optimization method on generating porous structures comprising multiple materials.The mathematical optimization formulation is established under the constraints of individual volume fraction of constituent phase or total mass,as well as the local volume fraction of all phases.The original optimization problem with numerous constraints is converted into a box-constrained optimization problem by incorporating all constraints to the augmented Lagrangian function,avoiding the parameter dependence in the conventional aggregation process.Furthermore,the local volume percentage can be precisely satisfied.The effects including the globalmass bound,the influence radius and local volume percentage on final designs are exploited through numerical examples.The numerical results also reveal that porous structures keep a balance between the bulk design and periodic design in terms of the resulting compliance.All results,including those for irregular structures andmultiple volume fraction constraints,demonstrate that the proposedmethod can provide an efficient solution for multiple material infill structures. 展开更多
关键词 Topology optimization porous structures local volume fraction augmented lagrangian multiple materials
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部