期刊文献+
共找到299篇文章
< 1 2 15 >
每页显示 20 50 100
Rockburst Intensity Grade Prediction Model Based on Batch Gradient Descent and Multi-Scale Residual Deep Neural Network
1
作者 Yu Zhang Mingkui Zhang +1 位作者 Jitao Li Guangshu Chen 《Computer Systems Science & Engineering》 SCIE EI 2023年第11期1987-2006,共20页
Rockburst is a phenomenon in which free surfaces are formed during excavation,which subsequently causes the sudden release of energy in the construction of mines and tunnels.Light rockburst only peels off rock slices ... Rockburst is a phenomenon in which free surfaces are formed during excavation,which subsequently causes the sudden release of energy in the construction of mines and tunnels.Light rockburst only peels off rock slices without ejection,while severe rockburst causes casualties and property loss.The frequency and degree of rockburst damage increases with the excavation depth.Moreover,rockburst is the leading engineering geological hazard in the excavation process,and thus the prediction of its intensity grade is of great significance to the development of geotechnical engineering.Therefore,the prediction of rockburst intensity grade is one problem that needs to be solved urgently.By comprehensively considering the occurrence mechanism of rockburst,this paper selects the stress index(σθ/σc),brittleness index(σ_(c)/σ_(t)),and rock elastic energy index(Wet)as the rockburst evaluation indexes through the Spearman coefficient method.This overcomes the low accuracy problem of a single evaluation index prediction method.Following this,the BGD-MSR-DNN rockburst intensity grade prediction model based on batch gradient descent and a multi-scale residual deep neural network is proposed.The batch gradient descent(BGD)module is used to replace the gradient descent algorithm,which effectively improves the efficiency of the network and reduces the model training time.Moreover,the multi-scale residual(MSR)module solves the problem of network degradation when there are too many hidden layers of the deep neural network(DNN),thus improving the model prediction accuracy.The experimental results reveal the BGDMSR-DNN model accuracy to reach 97.1%,outperforming other comparable models.Finally,actual projects such as Qinling Tunnel and Daxiangling Tunnel,reached an accuracy of 100%.The model can be applied in mines and tunnel engineering to realize the accurate and rapid prediction of rockburst intensity grade. 展开更多
关键词 rockburst prediction rockburst intensity grade deep neural network batch gradient descent multi-scale residual
下载PDF
PREDICTION OF ROCKBURST BY ARTIFICIAL NEURAL NETWORK 被引量:10
2
作者 凌标灿 ChenHaijun +1 位作者 LiNenghui NieDexin 《岩石力学与工程学报》 EI CAS CSCD 北大核心 2003年第5期762-768,共7页
Based on the analysis of main causes of rockburst,the compressive strength,tensile strength,elastic energy index of rock and the maximum tangential stress of the cavern wall are chosen as the criterion indexes for roc... Based on the analysis of main causes of rockburst,the compressive strength,tensile strength,elastic energy index of rock and the maximum tangential stress of the cavern wall are chosen as the criterion indexes for rockburst prediction.A new approach using neural method is proposed to predict rockburst occurrence and its intensity.The prediction results show that it is feasible and appropriate to use artificial neural network model for rockburst prediction. 展开更多
关键词 人工神经网络 岩石力学 岩爆 预测
下载PDF
Machine learning methods for rockburst prediction-state-of-the-art review 被引量:29
3
作者 Yuanyuan Pu Derek B.Apel +1 位作者 Victor Liu Hani Mitri 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2019年第4期565-570,共6页
One of the most serious mining disasters in underground mines is rockburst phenomena.They can lead to injuries and even fatalities as well as damage to underground openings and mining equipment.This has forced many re... One of the most serious mining disasters in underground mines is rockburst phenomena.They can lead to injuries and even fatalities as well as damage to underground openings and mining equipment.This has forced many researchers to investigate alternative methods to predict the potential for rockburst occurrence.However,due to the highly complex relation between geological,mechanical and geometric parameters of the mining environment,the traditional mechanics-based prediction methods do not always yield precise results.With the emergence of machine learning methods,a breakthrough in the prediction of rockburst occurrence has become possible in recent years.This paper presents a state-ofthe-art review of various applications of machine learning methods for the prediction of rockburst potential.First,existing rockburst prediction methods are introduced,and the limitations of such methods are highlighted.A brief overview of typical machine learning methods and their main features as predictive tools is then presented.The current applications of machine learning models in rockburst prediction are surveyed,with related mechanisms,technical details and performance analysis. 展开更多
关键词 rockburst prediction BURST LIABILITY Artificial neural network Support VECTOR machine Deep learning
下载PDF
Intelligent rockburst prediction model with sample category balance using feedforward neural network and Bayesian optimization 被引量:10
4
作者 Diyuan Li Zida Liu +2 位作者 Peng Xiao Jian Zhou Danial Jahed Armaghani 《Underground Space》 SCIE EI 2022年第5期833-846,共14页
The rockburst prediction becomes more and more challenging due to the development of deep underground projects and constructions.Increasing numbers of intelligent algorithms are used to predict and prevent rockburst.T... The rockburst prediction becomes more and more challenging due to the development of deep underground projects and constructions.Increasing numbers of intelligent algorithms are used to predict and prevent rockburst.This paper investigated the drawbacks of neural networks in rockburst prediction,and aimed at these shortcomings,Bayesian optimization and the synthetic minority oversampling technique+Tomek Link(SMOTETomek)were applied to efficiently develop the feedforward neural network(FNN)model for rockburst prediction.In this regard,314 real rockburst cases were collected to establish a database for modeling.The database was divided into a training set(80%)and a test set(20%).The maximum tangential stress,uniaxial compressive strength,tensile strength,stress ratio,brittleness ratio,and elastic strain energy were selected as input parameters.Bayesian optimization was implemented to find the optimal hyperparameters in FNN.To eliminate the effects of imbalanced category,SMOTETomek was adopted to process the training set to obtain a balanced training set.The FNN developed by the balanced training set received 90.48% accuracy in the test set,and the accuracy improved 12.7% compared to the imbalanced training set.For interpreting the FNN model,the permutation importance algorithm was introduced to analyze the relative importance of input variables.The elastic strain energy was the most essential variable,and some measures were proposed to prevent rockburst.To validate the practicability,the FNN developed by the balanced training set was utilized to predict rockburst in Sanshandao Gold Mine,China,and it had outstanding performance(accuracy 100%). 展开更多
关键词 rockburst prediction Feedforward neural network Bayesian optimization SMOTETomek
原文传递
Photovoltaic yield prediction using an irradiance forecast model based on multiple neural networks 被引量:12
5
作者 Saad Parvaiz DURRANI Stefan BALLUFF +1 位作者 Lukas WURZER Stefan KRAUTER 《Journal of Modern Power Systems and Clean Energy》 SCIE EI 2018年第2期255-267,共13页
In order to develop predictive control algorithms for efficient energy management and monitoring for residential grid connected photovoltaic systems, accurate and reliable photovoltaic(PV) power forecasts are required... In order to develop predictive control algorithms for efficient energy management and monitoring for residential grid connected photovoltaic systems, accurate and reliable photovoltaic(PV) power forecasts are required.A PV yield prediction system is presented based on an irradiance forecast model and a PV model. The PV power forecast is obtained from the irradiance forecast using the PV model. The proposed irradiance forecast model is based on multiple feed-forward neural networks. The global horizontal irradiance forecast has a mean absolute percentage error of 3.4% on a sunny day and 23% on a cloudy day for Stuttgart. PV power forecasts based on the neural network irradiance forecast have performed much better than the PV power persistence forecast model. 展开更多
关键词 Grid CONNECTED photovoltaic(GCPV) Photovoltaic(PV) PV power prediction IRRADIANCE forecast neural network(NN)
原文传递
Simple model based on artificial neural network for early prediction and simulation winter rapeseed yield 被引量:3
6
作者 Gniewko Niedba?a 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2019年第1期54-61,共8页
The aim of the research was to create a prediction model for winter rapeseed yield.The constructed model enabled to perform simulation on 30 June,in the current year,immediately before harvesting.An artificial neural ... The aim of the research was to create a prediction model for winter rapeseed yield.The constructed model enabled to perform simulation on 30 June,in the current year,immediately before harvesting.An artificial neural network with multilayer perceptron(MLP) topology was used to build the predictive model.The model was created on the basis of meteorological data(air temperature and atmospheric precipitation) and mineral fertilization data.The data were collected in the period 2008–2017 from 291 productive fields located in Poland,in the southern part of the Opole region.The assessment of the forecast quality created on the basis of the neural model has been verified by defining forecast errors using relative approximation error(RAE),root mean square error(RMS),mean absolute error(MAE),and mean absolute percentage error(MAPE) metrics.An important feature of the created predictive model is the ability to forecast the current agrotechnical year based on current weather and fertilizing data.The lowest value of the MAPE error was obtained for a neural network model based on the MLP network of 21:21-13-6-1:1 structure,which was 9.43%.The performed sensitivity analysis of the network examined the factors that have the greatest impact on the yield of winter rape.The highest rank 1 was obtained by an independent variable with the average air temperature from 1 January to 15 April of 2017(designation by the T1-4_CY model). 展开更多
关键词 forecast MLP network neural model prediction ERROR sensitivity analysis YIELD simulation
下载PDF
A hybrid model for short-term rainstorm forecasting based on a back-propagation neural network and synoptic diagnosis 被引量:1
7
作者 Guolu Gao Yang Li +2 位作者 Jiaqi Li Xueyun Zhou Ziqin Zhou 《Atmospheric and Oceanic Science Letters》 CSCD 2021年第5期13-18,共6页
Rainstorms are one of the most important types of natural disaster in China.In order to enhance the ability to forecast rainstorms in the short term,this paper explores how to combine a back-propagation neural network... Rainstorms are one of the most important types of natural disaster in China.In order to enhance the ability to forecast rainstorms in the short term,this paper explores how to combine a back-propagation neural network(BPNN)with synoptic diagnosis for predicting rainstorms,and analyzes the hit rates of rainstorms for the above two methods using the county of Tianquan as a case study.Results showed that the traditional synoptic diagnosis method still has an important referential meaning for most rainstorm types through synoptic typing and statistics of physical quantities based on historical cases,and the threat score(TS)of rainstorms was more than 0.75.However,the accuracy for two rainstorm types influenced by low-level easterly inverted troughs was less than 40%.The BPNN method efficiently forecasted these two rainstorm types;the TS and equitable threat score(ETS)of rainstorms were 0.80 and 0.79,respectively.The TS and ETS of the hybrid model that combined the BPNN and synoptic diagnosis methods exceeded the forecast score of multi-numerical simulations over the Sichuan Basin without exception.This kind of hybrid model enhanced the forecasting accuracy of rainstorms.The findings of this study provide certain reference value for the future development of refined forecast models with local features. 展开更多
关键词 RAINSTORM Short-term prediction method Back-propagation neural network Hybrid forecast model
下载PDF
Bootstrapped Multi-Model Neural-Network Super-Ensembles for Wind Speed and Power Forecasting
8
作者 Zhongxian Men Eugene Yee +2 位作者 Fue-Sang Lien Hua Ji Yongqian Liu 《Energy and Power Engineering》 2014年第11期340-348,共9页
The bootstrap resampling method is applied to an ensemble artificial neural network (ANN) approach (which combines machine learning with physical data obtained from a numerical weather prediction model) to provide a m... The bootstrap resampling method is applied to an ensemble artificial neural network (ANN) approach (which combines machine learning with physical data obtained from a numerical weather prediction model) to provide a multi-ANN model super-ensemble for application to multi-step-ahead forecasting of wind speed and of the associated power generated from a wind turbine. A statistical combination of the individual forecasts from the various ANNs of the super-ensemble is used to construct the best deterministic forecast, as well as the prediction uncertainty interval associated with this forecast. The bootstrapped neural-network methodology is validated using measured wind speed and power data acquired from a wind turbine in an operational wind farm located in northern China. 展开更多
关键词 Artificial neural Network BOOTSTRAP RESAMPLING Numerical Weather prediction Super-Ensemble Wind Speed Power forecasting
下载PDF
Prediction of the Bombay Stock Exchange (BSE) Market Returns Using Artificial Neural Network and Genetic Algorithm
9
作者 Yusuf Perwej Asif Perwej 《Journal of Intelligent Learning Systems and Applications》 2012年第2期108-119,共12页
Stock Market is the market for security where organized issuance and trading of Stocks take place either through exchange or over the counter in electronic or physical form. It plays an important role in canalizing ca... Stock Market is the market for security where organized issuance and trading of Stocks take place either through exchange or over the counter in electronic or physical form. It plays an important role in canalizing capital from the investors to the business houses, which consequently leads to the availability of funds for business expansion. In this paper, we investigate to predict the daily excess returns of Bombay Stock Exchange (BSE) indices over the respective Treasury bill rate returns. Initially, we prove that the excess return time series do not fluctuate randomly. We are applying the prediction models of Autoregressive feed forward Artificial Neural Networks (ANN) to predict the excess return time series using lagged value. For the Artificial Neural Networks model using a Genetic Algorithm is constructed to choose the optimal topology. This paper examines the feasibility of the prediction task and provides evidence that the markets are not fluctuating randomly and finally, to apply the most suitable prediction model and measure their efficiency. 展开更多
关键词 STOCK Market Genetic Algorithm Bombay STOCK Exchange (BSE) Artificial neural Network (ANN) prediction forecasting Data AUTOREGRESSIVE (AR)
下载PDF
Application of a Neural Network Technique for Prediction of the Water Quality Index in the Dong Nai River, Vietnam 被引量:4
10
作者 Nguyen Hien Than Che Dinh Ly +1 位作者 Pham Van Tat Nguyen Ngoc Thanh 《Journal of Environmental Science and Engineering(B)》 2016年第7期363-370,共8页
Recent trends in environmental management of water resource have enlarged the demand for predicting techniques that can provide reliable, efficient and accurate water quality. In this case study, the authors applied t... Recent trends in environmental management of water resource have enlarged the demand for predicting techniques that can provide reliable, efficient and accurate water quality. In this case study, the authors applied the Artificial Neural Networks (ANN) to estimate the water quality index on the Dong Nai River flowing through Dong Nai and Binh Duong provinces. The information and data including 10 water quality parameters of the Dong Nai River at 23 monitoring stations were collected during the recorded time period from 2010 to 2014 to build water quality prediction models. The results of the study demonstrated that the Water Quality Index (WQI) forecasted with GRNN was very significant and had high correlation coefficient (R2 = 0.974 and p = 0.0) compared to the real values of the WQI. Moreover, the ANN models provided better predicted values than the multiple regression models did. 展开更多
关键词 Artificial neural networks water quality forecast water quality prediction.
下载PDF
Artificial Intelligence Based Meteorological Parameter Forecasting for Optimizing Response of Nuclear Emergency Decision Support System
11
作者 BILAL Ahmed Khan HASEEB ur Rehman +5 位作者 QAISAR Nadeem MUHAMMAD Ahmad Naveed Qureshi JAWARIA Ahad MUHAMMAD Naveed Akhtar AMJAD Farooq MASROOR Ahmad 《原子能科学技术》 EI CAS CSCD 北大核心 2024年第10期2068-2076,共9页
This paper presents a novel artificial intelligence (AI) based approach to predict crucial meteorological parameters such as temperature,pressure,and wind speed,typically calculated from computationally intensive weat... This paper presents a novel artificial intelligence (AI) based approach to predict crucial meteorological parameters such as temperature,pressure,and wind speed,typically calculated from computationally intensive weather research and forecasting (WRF) model.Accurate meteorological data is indispensable for simulating the release of radioactive effluents,especially in dispersion modeling for nuclear emergency decision support systems.Simulation of meteorological conditions during nuclear emergencies using the conventional WRF model is very complex and time-consuming.Therefore,a new artificial neural network (ANN) based technique was proposed as a viable alternative for meteorological prediction.A multi-input multi-output neural network was trained using historical site-specific meteorological data to forecast the meteorological parameters.Comprehensive evaluation of this technique was conducted to test its performance in forecasting various parameters including atmospheric pressure,temperature,and wind speed components in both East-West and North-South directions.The performance of developed network was evaluated on an unknown dataset,and acquired results are within the acceptable range for all meteorological parameters.Results show that ANNs possess the capability to forecast meteorological parameters,such as temperature and pressure,at multiple spatial locations within a grid with high accuracy,utilizing input data from a single station.However,accuracy is slightly compromised when predicting wind speed components.Root mean square error (RMSE) was utilized to report the accuracy of predicted results,with values of 1.453℃for temperature,77 Pa for predicted pressure,1.058 m/s for the wind speed of U-component and 0.959 m/s for the wind speed of V-component.In conclusion,this approach offers a precise,efficient,and wellinformed method for administrative decision-making during nuclear emergencies. 展开更多
关键词 prediction of meteorological parameters weather research and forecasting model artificial neural networks nuclear emergency support system
下载PDF
Combining Trend-Based Loss with Neural Network for Air Quality Forecasting in Internet of Things 被引量:1
12
作者 Weiwen Kong BaoweiWang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第11期849-863,共15页
Internet of Things(IoT)is a network that connects things in a special union.It embeds a physical entity through an intelligent perception system to obtain information about the component at any time.It connects variou... Internet of Things(IoT)is a network that connects things in a special union.It embeds a physical entity through an intelligent perception system to obtain information about the component at any time.It connects various objects.IoT has the ability of information transmission,information perception,and information processing.The air quality forecasting has always been an urgent problem,which affects people’s quality of life seriously.So far,many air quality prediction algorithms have been proposed,which can be mainly classified into two categories.One is regression-based prediction,the other is deep learning-based prediction.Regression-based prediction is aimed to make use of the classical regression algorithm and the various supervised meteorological characteristics to regress themeteorological value.Deep learning methods usually use convolutional neural networks(CNN)or recurrent neural networks(RNN)to predict the meteorological value.As an excellent feature extractor,CNN has achieved good performance in many scenes.In the same way,as an efficient network for orderly data processing,RNN has also achieved good results.However,few or none of the above methods can meet the current accuracy requirements on prediction.Moreover,there is no way to pay attention to the trend monitoring of air quality data.For the sake of accurate results,this paper proposes a novel predicted-trend-based loss function(PTB),which is used to replace the loss function in RNN.At the same time,the trend of change and the predicted value are constrained to obtain more accurate prediction results of PM_(2.5).In addition,this paper extends the model scenario to the prediction of the whole existing training data features.All the data on the next day of the model is mixed labels,which effectively realizes the prediction of all features.The experiments show that the loss function proposed in this paper is effective. 展开更多
关键词 Air quality forecasting Internet of Things recurrent neural network predicted trend loss function
下载PDF
DOWNSCALING FORECAST OF MONTHLY PRECIPITATION OVER GUANGXI BASED ON BP NEURAL NETWORK MODEL 被引量:1
13
作者 何慧 金龙 +1 位作者 覃志年 袁丽军 《Journal of Tropical Meteorology》 SCIE 2007年第1期97-100,共4页
Variables fields such as enstrophy, meridional-wind and zonal-wind variables are derived from monthly 500 hPa geopotential height anomalous fields. In this work, we select original predictors from monthly 500-hPa geop... Variables fields such as enstrophy, meridional-wind and zonal-wind variables are derived from monthly 500 hPa geopotential height anomalous fields. In this work, we select original predictors from monthly 500-hPa geopotential height anomalous fields and their variables in June of 1958 - 2001, and determine comprehensive predictors by conducting empirical orthogonal function (EOF) respectively with the original predictors. A downscaling forecast model based on the back propagation (BP) neural network is built by use of the comprehensive predictors to predict the monthly precipitation in June over Guangxi with the monthly dynamic extended range forecast products. For comparison, we also build another BP neural network model with the same predictands by using the former comprehensive predictors selected from 500-hPa geopotential height anomalous fields in May to December of 1957 - 2000 and January to April of 1958 - 2001. The two models are tested and results show that the precision of superposition of the downscaling model is better than that of the one based on former comprehensive predictors, but the prediction accuracy of the downscaling model depends on the output of monthly dynamic extended range forecast. 展开更多
关键词 monthly dynamic extended range forecast neural network model downsealing forecast prediction error
下载PDF
Application of Regularized Logistic Regression and Artificial Neural Network Model for Ozone Classification across El Paso County, Texas, United States
14
作者 Callistus Obunadike Adekunle Adefabi +2 位作者 Somtobe Olisah David Abimbola Kunle Oloyede 《Journal of Data Analysis and Information Processing》 2023年第3期217-239,共23页
This paper focuses on ozone prediction in the atmosphere using a machine learning approach. We utilize air pollutant and meteorological variable datasets from the El Paso area to classify ozone levels as high or low. ... This paper focuses on ozone prediction in the atmosphere using a machine learning approach. We utilize air pollutant and meteorological variable datasets from the El Paso area to classify ozone levels as high or low. The LR and ANN algorithms are employed to train the datasets. The models demonstrate a remarkably high classification accuracy of 89.3% in predicting ozone levels on a given day. Evaluation metrics reveal that both the ANN and LR models exhibit accuracies of 89.3% and 88.4%, respectively. Additionally, the AUC values for both models are comparable, with the ANN achieving 95.4% and the LR obtaining 95.2%. The lower the cross-entropy loss (log loss), the higher the model’s accuracy or performance. Our ANN model yields a log loss of 3.74, while the LR model shows a log loss of 6.03. The prediction time for the ANN model is approximately 0.00 seconds, whereas the LR model takes 0.02 seconds. Our odds ratio analysis indicates that features such as “Solar radiation”, “Std. Dev. Wind Direction”, “outdoor temperature”, “dew point temperature”, and “PM10” contribute to high ozone levels in El Paso, Texas. Based on metrics such as accuracy, error rate, log loss, and prediction time, the ANN model proves to be faster and more suitable for ozone classification in the El Paso, Texas area. 展开更多
关键词 Machine Learning Ozone prediction Pollutants forecasting Atmospheric Monitoring Air Quality Logistic Regression Artificial neural Network
下载PDF
Extreme learning with chemical reaction optimization for stock volatility prediction 被引量:2
15
作者 Sarat Chandra Nayak Bijan Bihari Misra 《Financial Innovation》 2020年第1期290-312,共23页
Extreme learning machine(ELM)allows for fast learning and better generalization performance than conventional gradient-based learning.However,the possible inclusion of non-optimal weight and bias due to random selecti... Extreme learning machine(ELM)allows for fast learning and better generalization performance than conventional gradient-based learning.However,the possible inclusion of non-optimal weight and bias due to random selection and the need for more hidden neurons adversely influence network usability.Further,choosing the optimal number of hidden nodes for a network usually requires intensive human intervention,which may lead to an ill-conditioned situation.In this context,chemical reaction optimization(CRO)is a meta-heuristic paradigm with increased success in a large number of application areas.It is characterized by faster convergence capability and requires fewer tunable parameters.This study develops a learning framework combining the advantages of ELM and CRO,called extreme learning with chemical reaction optimization(ELCRO).ELCRO simultaneously optimizes the weight and bias vector and number of hidden neurons of a single layer feed-forward neural network without compromising prediction accuracy.We evaluate its performance by predicting the daily volatility and closing prices of BSE indices.Additionally,its performance is compared with three other similarly developed models—ELM based on particle swarm optimization,genetic algorithm,and gradient descent—and find the performance of the proposed algorithm superior.Wilcoxon signed-rank and Diebold–Mariano tests are then conducted to verify the statistical significance of the proposed model.Hence,this model can be used as a promising tool for financial forecasting. 展开更多
关键词 Extreme learning machine Single layer feed-forward network Artificial chemical reaction optimization Stock volatility prediction Financial time series forecasting Artificial neural network Genetic algorithm Particle swarm optimization
下载PDF
Attention-Based Multi-Scale Prediction Network for Time-Series Data
16
作者 Junjie Li Lin Zhu +2 位作者 Yong Zhang Da Guo Xingwen Xia 《China Communications》 SCIE CSCD 2022年第5期286-301,共16页
Time series data is a kind of data accumulated over time,which can describe the change of phenomenon.This kind of data reflects the degree of change of a certain thing or phenomenon.The existing technologies such as L... Time series data is a kind of data accumulated over time,which can describe the change of phenomenon.This kind of data reflects the degree of change of a certain thing or phenomenon.The existing technologies such as LSTM and ARIMA are better than convolutional neural network in time series prediction,but they are not enough to mine the periodicity of data.In this article,we perform periodic analysis on two types of time series data,select time metrics with high periodic characteristics,and propose a multi-scale prediction model based on the attention mechanism for the periodic trend of the data.A loss calculation method for traffic time series characteristics is proposed as well.Multiple experiments have been conducted on actual data sets.The experiments show that the method proposed in this paper has better performance than commonly used traffic prediction methods(ARIMA,LSTM,etc.)and 3%-5%increase on MAPE. 展开更多
关键词 network traffic prediction attention mechanism neural network machine learning single point forecast
下载PDF
Multipoint Heave Motion Prediction Method for Ships Based on the PSO-TGCN Model
17
作者 DING Shi-feng MA Qun +2 位作者 ZHOU Li HAN Sen DONG Wen-bo 《China Ocean Engineering》 SCIE EI CSCD 2023年第6期1022-1031,共10页
During ship operations,frequent heave movements can pose significant challenges to the overall safety of the ship and completion of cargo loading.The existing heave compensation systems suffer from issues such as dead... During ship operations,frequent heave movements can pose significant challenges to the overall safety of the ship and completion of cargo loading.The existing heave compensation systems suffer from issues such as dead zones and control system time lags,which necessitate the development of reasonable prediction models for ship heave movements.In this paper,a novel model based on a time graph convolutional neural network algorithm and particle swarm optimization algorithm(PSO-TGCN)is proposed for the first time to predict the multipoint heave movements of ships under different sea conditions.To enhance the dataset's suitability for training and reduce interference,various filter algorithms are employed to optimize the dataset.The training process utilizes simulated heave data under different sea conditions and measured heave data from multiple points.The results show that the PSO-TGCN model predicts the ship swaying motion in different sea states after 2 s with 84.7%accuracy,while predicting the swaying motion in three different positions.By performing a comparative study,it was also found that the present method achieves better performance that other popular methods.This model can provide technical support for intelligent ship control,improve the control accuracy of intelligent ships,and promote the development of intelligent ships. 展开更多
关键词 ship motion prediction time delay multipoint forecast time-graph convolutional neural network particle swarm optimization
下载PDF
Artificial Intelligence Based Solar Radiation Predictive Model Using Weather Forecasts
18
作者 Sathish Babu Pandu A.Sagai Francis Britto +4 位作者 Pudi Sekhar P.Vijayarajan Amani Abdulrahman Albraikan Fahd N.Al-Wesabi Mesfer Al Duhayyim 《Computers, Materials & Continua》 SCIE EI 2022年第4期109-124,共16页
Solar energy has gained attention in the past two decades,since it is an effective renewable energy source that causes no harm to the environment.Solar Irradiation Prediction(SIP)is essential to plan,schedule,and mana... Solar energy has gained attention in the past two decades,since it is an effective renewable energy source that causes no harm to the environment.Solar Irradiation Prediction(SIP)is essential to plan,schedule,and manage photovoltaic power plants and grid-based power generation systems.Numerous models have been proposed for SIP in the literature while such studies demand huge volumes of weather data about the target location for a lengthy period of time.In this scenario,commonly available Artificial Intelligence(AI)technique can be trained over past values of irradiance as well as weatherrelated parameters such as temperature,humidity,wind speed,pressure,and precipitation.Therefore,in current study,the authors aimed at developing a solar irradiance prediction model by integrating big data analytics with AI models(BDAAI-SIP)using weather forecasting data.In order to perform long-term collection of weather data,Hadoop MapReduce tool is employed.The proposed solar irradiance prediction model operates on different stages.Primarily,data preprocessing take place using various sub processes such as data conversion,missing value replacement,and data normalization.Besides,Elman Neural Network(ENN),a type of feedforward neural network is also applied for predictive analysis.It is divided into input layer,hidden layer,loadbearing layer,and output layer.To overcome the insufficiency of ENN in choosing the value of weights and hidden layer neuron count,Mayfly Optimization(MFO)algorithm is applied.In order to validate the performance of the proposed model,a series of experiments was conducted.The experimental values infer that the proposed model outperformed other methods used for comparison. 展开更多
关键词 Solar irradiation prediction weather forecast artificial intelligence Elman neural network mayfly optimization
下载PDF
Forecasting Shark Attack Risk Using AI: A Deep Learning Approach
19
作者 Evan Valenti 《Journal of Data Analysis and Information Processing》 2023年第4期360-370,共11页
This study aimed to develop a predictive model utilizing available data to forecast the risk of future shark attacks, making this critical information accessible for everyday public use. Employing a deep learning/neur... This study aimed to develop a predictive model utilizing available data to forecast the risk of future shark attacks, making this critical information accessible for everyday public use. Employing a deep learning/neural network methodology, the system was designed to produce a binary output that is subsequently classified into categories of low, medium, or high risk. A significant challenge encountered during the study was the identification and procurement of appropriate historical and forecasted marine weather data, which is integral to the model’s accuracy. Despite these challenges, the results of the study were startlingly optimistic, showcasing the model’s ability to predict with impressive accuracy. In conclusion, the developed forecasting tool not only offers promise in its immediate application but also sets a robust precedent for the adoption and adaptation of similar predictive systems in various analogous use cases in the marine environment and beyond. 展开更多
关键词 deep learning shark research predictive ai marine biology neural network machine learning shark attacks data science shark biology forecasting
下载PDF
Enhancing Urban Intelligence Energy Management: Innovative Load Forecasting Techniques for Electrical Networks
20
作者 Zeinab Farrokhi Kamran Hassanpouri Baesmat Emma E. Regentova 《Journal of Power and Energy Engineering》 2024年第11期72-88,共17页
Energy sustains the world, yet fossil fuels, a finite resource, are dwindling. This necessitates a shift towards more sustainable energy sources, such as electricity. Accurate load forecasting is crucial in today’s g... Energy sustains the world, yet fossil fuels, a finite resource, are dwindling. This necessitates a shift towards more sustainable energy sources, such as electricity. Accurate load forecasting is crucial in today’s global energy landscape, as it helps predict various aspects such as production, revenue, consumption, economic conditions, weather impacts, power system utilization, customer demand, and economic growth. For instance, an increase in electricity demand within a country often signifies a boost in industry and production, leading to economic progress and reduced unemployment. This project aims to enhance prediction accuracy through meticulous input filtering, taking into account factors like population growth, planned loads, inflation, and competitive pricing pressures from producers. Despite inherent prediction errors, efforts are made to minimize these discrepancies. This paper introduces a novel combined method for mid-term energy forecasting. To demonstrate its efficacy, real data from the past ten months, collected from subscribers of the Kerman distribution company, was used to forecast energy consumption over the next ten days. The innovative method, which integrates multiple forecasting techniques and robust filters, significantly improves forecasting precision. The following error metrics were recorded for the proposed method: MSE: 0.009, MAE: 0.083, MAPE: 0.776, RMSE: 0.095, AE: 0.013. 展开更多
关键词 Energy prediction forecasting Regression neural Network MTLF
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部