采用CEA(Chemical Equilibrium with Applications)计算复合推进剂化学平衡组分及喷管入口参数,随后通过FLUENT对固体火箭发动机喷管-尾喷焰流场进行了一体化数值仿真。采用时间推进法及AUSM空间离散格式数值求解二维轴对称Navier-Stoke...采用CEA(Chemical Equilibrium with Applications)计算复合推进剂化学平衡组分及喷管入口参数,随后通过FLUENT对固体火箭发动机喷管-尾喷焰流场进行了一体化数值仿真。采用时间推进法及AUSM空间离散格式数值求解二维轴对称Navier-Stokes方程组,采用k-ε湍流模型模拟喷流与环境大气的掺混,并考虑了H2、CO、HCl在喷流流场中的二次燃烧,运用拉格朗日方法模拟Al2O3颗粒与喷流的相互作用。计算在不同高度和马赫数下展开,给出了不同情况下的流场分布。结果表明,H2、CO、HCl的二次燃烧对喷流流场影响显著;随着高度的增加,喷流流场影响域扩大;随着来流马赫数增加,喷流流场波节数降低。展开更多
采用二维非定常气流场模型和VOF(Volume of Fluids)模型,对水下固体火箭发动机点火初期这一非稳态过程进行了气水耦合数值求解。模拟了燃气泡的形成、发展及断裂过程,揭示了燃气泡中压强、马赫数等参数的变化规律,得到了高速射流点火初...采用二维非定常气流场模型和VOF(Volume of Fluids)模型,对水下固体火箭发动机点火初期这一非稳态过程进行了气水耦合数值求解。模拟了燃气泡的形成、发展及断裂过程,揭示了燃气泡中压强、马赫数等参数的变化规律,得到了高速射流点火初期的流场变化特征,模拟中捕捉到了喷管出口处的压力脉动和燃气泡的"颈缩"现象,并对引起压力脉动的相关因素进行了讨论。模拟结果表明,燃气泡的发展变化过程会对喷管扩张段产生影响,这是水下高速射流的重要特征之一。上述研究可为水下发射固体火箭发动机设计提供参考。展开更多
文摘采用CEA(Chemical Equilibrium with Applications)计算复合推进剂化学平衡组分及喷管入口参数,随后通过FLUENT对固体火箭发动机喷管-尾喷焰流场进行了一体化数值仿真。采用时间推进法及AUSM空间离散格式数值求解二维轴对称Navier-Stokes方程组,采用k-ε湍流模型模拟喷流与环境大气的掺混,并考虑了H2、CO、HCl在喷流流场中的二次燃烧,运用拉格朗日方法模拟Al2O3颗粒与喷流的相互作用。计算在不同高度和马赫数下展开,给出了不同情况下的流场分布。结果表明,H2、CO、HCl的二次燃烧对喷流流场影响显著;随着高度的增加,喷流流场影响域扩大;随着来流马赫数增加,喷流流场波节数降低。
文摘采用二维非定常气流场模型和VOF(Volume of Fluids)模型,对水下固体火箭发动机点火初期这一非稳态过程进行了气水耦合数值求解。模拟了燃气泡的形成、发展及断裂过程,揭示了燃气泡中压强、马赫数等参数的变化规律,得到了高速射流点火初期的流场变化特征,模拟中捕捉到了喷管出口处的压力脉动和燃气泡的"颈缩"现象,并对引起压力脉动的相关因素进行了讨论。模拟结果表明,燃气泡的发展变化过程会对喷管扩张段产生影响,这是水下高速射流的重要特征之一。上述研究可为水下发射固体火箭发动机设计提供参考。