Tin(Sn)holds great promise as an anode material for next-generation lithium(Li)ion batteries but suffers from massive volume change and poor cycling performance.To clarify the dynamic chemical and microstructural evol...Tin(Sn)holds great promise as an anode material for next-generation lithium(Li)ion batteries but suffers from massive volume change and poor cycling performance.To clarify the dynamic chemical and microstructural evolution of Sn anode during lithiation and delithiation,synchrotron X-ray energydispersive diffraction and X-ray tomography are simultaneously employed during Li/Sn cell operation.The intermediate Li-Sn alloy phases during de/lithiation are identified,and their dynamic phase transformation is unraveled which is further correlated with the volume variation of the Sn at particle-and electrode-level.Moreover,we find that the Sn particle expansion/shrinkage induced particle displacement is anisotropic:the displacement perpendicular to the electrode surface(z-axis)is more pronounced compared to the directions(x-and y-axis)along the electrode surface.This anisotropic particle displacement leads to an anisotropic volume variation at the electrode level and eventually generates a net electrode expansion towards the separator after cycling,which could be one of the root causes of mechanical detachment and delamination of electrodes during long-term operation.The unraveled chemical evolution of Li-Sn and deep insights into the microstructural evolution of Sn anode provided here could guide future design and engineering of Sn and other alloy anodes for high energy density Li-and Na-ion batteries.展开更多
We present a fast synchrotron X-ray tomography study of the packing structures of rods with different aspect ratios. Utilizing the high flux of the X-rays generated from the third-generation synchrotron source, we can...We present a fast synchrotron X-ray tomography study of the packing structures of rods with different aspect ratios. Utilizing the high flux of the X-rays generated from the third-generation synchrotron source, we can complete a high- resolution tomography scan within a short period of time, after which the three-dimensional (3D) packing structure can be obtained for the subsequent structural analysis. The image phase-retrieval procedure has been implemented to enhance the image contrast. We systematically investigated the effects of particle shape and aspect ratio on the structural properties including packing density and contact number. It turns out that large aspect ratio rod packings will have wider distributions of free volume fraction and larger mean contact numbers.展开更多
InSb alloy is a promising candidate for sodium/potassium ion batteries(SIBs/PIBs)but challenged with achieving high performance by dramatic volumetric changes.Herein,nanoporous(np)-InSb with dualscale phases(cubic/hex...InSb alloy is a promising candidate for sodium/potassium ion batteries(SIBs/PIBs)but challenged with achieving high performance by dramatic volumetric changes.Herein,nanoporous(np)-InSb with dualscale phases(cubic/hexagonal(C/H)-InSb)was fabricated by chemical dealloying of ternary Mg-In-Sb precursor.Operando X-ray diffraction(XRD)and ex-situ characterizations well rationalize the dealloying/alloying mechanisms and the formation of dual-scale microstructures/phases.As an anode for SIB/PIBs,the np-InSb electrode exhibits superior reversible capacities and lifespan compared with the monometallic porous(p)-In electrode,stemming from the dealloying-induced dual-scale nanoporous architecture and alloying strategy with proper composition.The operando XRD results demonstrate that the(de)sodiated mechanism of the np-InSb electrode involves a two-step(de)alloying process,while the(de)potassiated mechanism is associated with a full electrochemically-driven amorphization upon cycling.Additionally,the gas evolution during the(dis)charge process was monitored by on-line mass spectrometry.展开更多
Nanostructured transition metal oxides,employed as anode materials for lithium-ion batteries,exhibit a higher capacity than the theoretical capacity based on the conversion reaction.To date,the reasons behind this phe...Nanostructured transition metal oxides,employed as anode materials for lithium-ion batteries,exhibit a higher capacity than the theoretical capacity based on the conversion reaction.To date,the reasons behind this phenomenon are unclear.For the one-step evolution of anode material for lithium-ion batteries,it is essential to understand the lithium storage reaction mechanism of the anode material.Herein,we provide a detailed report on the lithium storage and release mechanism of MnO2,using synchrotron-based X-ray techniques.X-ray diffraction and X-ray absorption spectroscopy results indicate that during the first discharge,MnO2 is reduced in the order of MnO2→LixMnO2(1<X<2)→MnO→Mn metal,followed by a reversible reaction between Mn metal and Mn3O4.Furthermore,soft X-ray absorption spectroscopy results indicate that additional reversible formation-decomposition of the electrolyte-derived surface layer occurs and contributes to the reversible capacity of MnO2 after the first discharge.These findings contribute to further understanding of the reaction mechanism and additional lithium storage of MnO2 and suggest practical strategies for developing high energy density anode materials for next-generation Li batteries.展开更多
One-step pretreatment,anodization,is used to activate the polyacrylonitrile (PAN)-based carbon fibers instead of the routine two-step pretreatment,sensitization with SnCl2 and activation with PdCl2.The effect of the...One-step pretreatment,anodization,is used to activate the polyacrylonitrile (PAN)-based carbon fibers instead of the routine two-step pretreatment,sensitization with SnCl2 and activation with PdCl2.The effect of the anodization pretreatment on the graphitization of PAN-based carbon fibers is investigated as a function of Ni-P catalyst.The PAN-based carbon fibers are anodized in H3PO4 electrolyte resulting in the formation of active sites,which thereby facilitates the following electroless Ni-P coating.Carbon fibers in the presence and absence of Ni-P coatings are heat treated and the structural changes are characterized by X-ray diffraction and Raman spectroscopy,both of which indicate that the graphitization of PAN-based carbon fibers are accelerated by both the anodization treatment and the catalysts Ni-P.Using the anodized carbon fibers,the routine two-step pretreatment,sensitization and activation,is not needed.展开更多
Sodium metal battery(SMB)technology is one of the most promising candidates for next-generation rechargeable energy storage systems due to its high theoretical capacity and economical costeffectiveness.Unfortunately,i...Sodium metal battery(SMB)technology is one of the most promising candidates for next-generation rechargeable energy storage systems due to its high theoretical capacity and economical costeffectiveness.Unfortunately,its practical implementation is hindered by several challenges including short life-span and fast capacity decay,which is closely related to the uncontrollable generation of the sodium dendrites.Herein,a nitrogen and oxygen co-doped three-dimensional carbon cloth with hollow tubular fiber units was constructed as the host material for Na plating(Na@CC)to tackle these challenges.The obtained composite electrode can effectively reduce the nucleation overpotential of Na,guide the homogeneous Na^(+)flux,increase the kinetics of Na electrodeposition,lower the effective current density and eventually suppress the formation of electrochemically inactive Na dendrites.As a result,batteries built with the Na@CC composites exhibited stable long-term cycling stability.To gain an in-depth and comprehensive understanding of such phenomena,non-destructive and three-dimensional synchrotron X-ray tomography was employed to investigate the cycled batteries.Moreover,the COMSOL Multiphysics simulation was further employed to reveal the Na electrodeposition mechanisms.The current work not only showcases the feasibility of currently proposed sodiophilic 3 D Na@CC composite electrode but also provides fundamental insights into the underlying working mechanisms that govern its outstanding electrochemical performance.展开更多
A method of concentration analysis based on X-ray photoelectron spectroscopy (XPS) results was introduced. The concentration of Ce-rich conversion coating on the anodized Al based metal matrix composites AI6061/SiCp w...A method of concentration analysis based on X-ray photoelectron spectroscopy (XPS) results was introduced. The concentration of Ce-rich conversion coating on the anodized Al based metal matrix composites AI6061/SiCp was then studied according to this method. The results revealed that the Ce conversion coating on the anodized AI6061/SiCp consisted of Al oxide, Ce oxide and Ce hydroxide. The state of Ce element exhibited the mixture of Ce3+ and Ce4+. Some of Cell I was oxidized to be CelV in the outer layer coating.展开更多
Using implants for dental applications are well-accepted procedures as one of the solutions for periodontal defect repair. Suitable design and materials, their reaction with the surrounding hard tissues and interfacia...Using implants for dental applications are well-accepted procedures as one of the solutions for periodontal defect repair. Suitable design and materials, their reaction with the surrounding hard tissues and interfacial biomechanical properties are still considered to be the primary criteria which need to be addressed. The purpose of present study was to evaluate the bone repair around pure titanium implants and porous surface using anodic oxidation technique, after their insertion in tibiae of rats (n = 15). Five animals received pure titanium-surface implants in tibia, 5 rough-surface implants (TiO2/Ti) in tibia and last five acted as control group. The interfacial integrity and compositional variation along the interface were studied using scanning electron microscope (SEM) with energy dispersive analysis of X-ray (EDX) and histopathology after 2 months. The rats were sacrificed 8 weeks after surgery and fragments of the tibiae containing the implants were submitted to histological analyses to evaluate new bone formation at the implant-bone interface as well as the tibiae were radio graphed. The SEM-EDX results confirmed the initial stability for the Ti implant, but the regeneration of new bone formation was faster in the case of TiO2/Ti implant, and hence could be used for faster healing. The results of the histological analysis showed that osseointegration occurred for both types of implants with similar quality of bone tissue. In conclusion, the porous-surface implants contributed to the osseointegration because they provide a larger contact area with surface roughness at implant-bone interface can help into the formation of physico-chemical bondage with the surrounding hard tissues.展开更多
This research is aimed at preparing nano (WO3:Sn) thin film, so that manufacturing anode electrode for a cell electrolysis to produce hydrogen fuel, this thin film was prepared on glass substrates by using depositi...This research is aimed at preparing nano (WO3:Sn) thin film, so that manufacturing anode electrode for a cell electrolysis to produce hydrogen fuel, this thin film was prepared on glass substrates by using deposition laser pulse (LPD) technique have been studying optical properties through the spectra of absorbance and transmittance, was determine the optical energy gap was observed that the permeability increases with the wavelength found that these films have high transmittance in the visible spectral region. The allowed direct band gap was found to increase from (2.9 eV) structured characteristics was studied through the analysis of X-ray diffraction (XRD) of the prepared film for determining the yielding phase which are to set the with standard tables. Also, the sample was tested atomic force microscope to identify the roughness of prepared films surface, and has been the study of the volume of gas output voltages with change, time and current.展开更多
Magnesium-ion batteries(MIBs)are promising alternatives to lithium-ion batteries due to their safety and high theoretical specific capacity,and the abundance of magnesium reserves.However,their anodes and electro-lyte...Magnesium-ion batteries(MIBs)are promising alternatives to lithium-ion batteries due to their safety and high theoretical specific capacity,and the abundance of magnesium reserves.However,their anodes and electro-lytes severely restrict the development of MIBs,so alloy-type anodes provide an effective strategy to circum-vent the surface passivation issue encountered with Mg metal in conventional electrolytes.Theoretically,a germanium anode can deliver a high specific capacity of 1476 mAh g?1,but hitherto,no experimental reports have described Ge in MIBs.Herein,we experimentally verified that Ge could reversibly react with Mg 2þions through the design of dual-phase Ge–Bi film electrodes fabricated by magnetron co-sputtering.Notably,a Ge 57 Bi 43 electrode delivered a high specific capacity of 847.5 mAh g?1,owing to the joint alloying reactions of Ge and Bi with Mg,which was much higher than the specific capacity of Bi(around 385 mAh g?1).Moreover,the Ge–Bi anode showed excellent rate performance,good cycling stability,and superior compatibility with conventional electrolytes such as Mg(TFSI)2.More importantly,the Mg storage mechanism of the Ge–Bi anode was unveiled by operando X-ray diffraction,and density functional theory calculations rationalized that the introduction of Bi to form Ge–Bi evidently decreased the defect formation energy and effectively boosted the electrochemical reactivity of Ge with Mg.展开更多
基金sponsored by the Helmholtz Association,the China Scholarship Council(CSC)partially funded by the German Research Foundation,DFG(Project No.MA 5039/4-1)。
文摘Tin(Sn)holds great promise as an anode material for next-generation lithium(Li)ion batteries but suffers from massive volume change and poor cycling performance.To clarify the dynamic chemical and microstructural evolution of Sn anode during lithiation and delithiation,synchrotron X-ray energydispersive diffraction and X-ray tomography are simultaneously employed during Li/Sn cell operation.The intermediate Li-Sn alloy phases during de/lithiation are identified,and their dynamic phase transformation is unraveled which is further correlated with the volume variation of the Sn at particle-and electrode-level.Moreover,we find that the Sn particle expansion/shrinkage induced particle displacement is anisotropic:the displacement perpendicular to the electrode surface(z-axis)is more pronounced compared to the directions(x-and y-axis)along the electrode surface.This anisotropic particle displacement leads to an anisotropic volume variation at the electrode level and eventually generates a net electrode expansion towards the separator after cycling,which could be one of the root causes of mechanical detachment and delamination of electrodes during long-term operation.The unraveled chemical evolution of Li-Sn and deep insights into the microstructural evolution of Sn anode provided here could guide future design and engineering of Sn and other alloy anodes for high energy density Li-and Na-ion batteries.
基金Project supported by the National Natural Science Foundation of China(Grant No.11175121)the National Basic Research Program of China(GrantNo.2010CB834301)supported by the U.S.DOE(Grant No.DE-AC02-06CH11357)
文摘We present a fast synchrotron X-ray tomography study of the packing structures of rods with different aspect ratios. Utilizing the high flux of the X-rays generated from the third-generation synchrotron source, we can complete a high- resolution tomography scan within a short period of time, after which the three-dimensional (3D) packing structure can be obtained for the subsequent structural analysis. The image phase-retrieval procedure has been implemented to enhance the image contrast. We systematically investigated the effects of particle shape and aspect ratio on the structural properties including packing density and contact number. It turns out that large aspect ratio rod packings will have wider distributions of free volume fraction and larger mean contact numbers.
基金financial support by the National Natural Science Foundation of China(51871133)the Taishan Scholar Foundation of Shandong Province,the Key Research and Development Program of Shandong Province(2021ZLGX01)the program of Jinan Science and Technology Bureau(2019GXRC001)。
文摘InSb alloy is a promising candidate for sodium/potassium ion batteries(SIBs/PIBs)but challenged with achieving high performance by dramatic volumetric changes.Herein,nanoporous(np)-InSb with dualscale phases(cubic/hexagonal(C/H)-InSb)was fabricated by chemical dealloying of ternary Mg-In-Sb precursor.Operando X-ray diffraction(XRD)and ex-situ characterizations well rationalize the dealloying/alloying mechanisms and the formation of dual-scale microstructures/phases.As an anode for SIB/PIBs,the np-InSb electrode exhibits superior reversible capacities and lifespan compared with the monometallic porous(p)-In electrode,stemming from the dealloying-induced dual-scale nanoporous architecture and alloying strategy with proper composition.The operando XRD results demonstrate that the(de)sodiated mechanism of the np-InSb electrode involves a two-step(de)alloying process,while the(de)potassiated mechanism is associated with a full electrochemically-driven amorphization upon cycling.Additionally,the gas evolution during the(dis)charge process was monitored by on-line mass spectrometry.
基金supported by the Samsung Reserach Funding & Incubation Center of Samsung Electronics under Project Number MA1401-52。
文摘Nanostructured transition metal oxides,employed as anode materials for lithium-ion batteries,exhibit a higher capacity than the theoretical capacity based on the conversion reaction.To date,the reasons behind this phenomenon are unclear.For the one-step evolution of anode material for lithium-ion batteries,it is essential to understand the lithium storage reaction mechanism of the anode material.Herein,we provide a detailed report on the lithium storage and release mechanism of MnO2,using synchrotron-based X-ray techniques.X-ray diffraction and X-ray absorption spectroscopy results indicate that during the first discharge,MnO2 is reduced in the order of MnO2→LixMnO2(1<X<2)→MnO→Mn metal,followed by a reversible reaction between Mn metal and Mn3O4.Furthermore,soft X-ray absorption spectroscopy results indicate that additional reversible formation-decomposition of the electrolyte-derived surface layer occurs and contributes to the reversible capacity of MnO2 after the first discharge.These findings contribute to further understanding of the reaction mechanism and additional lithium storage of MnO2 and suggest practical strategies for developing high energy density anode materials for next-generation Li batteries.
基金Funded by the National Basic Research Program of China (No.2006CB600903)
文摘One-step pretreatment,anodization,is used to activate the polyacrylonitrile (PAN)-based carbon fibers instead of the routine two-step pretreatment,sensitization with SnCl2 and activation with PdCl2.The effect of the anodization pretreatment on the graphitization of PAN-based carbon fibers is investigated as a function of Ni-P catalyst.The PAN-based carbon fibers are anodized in H3PO4 electrolyte resulting in the formation of active sites,which thereby facilitates the following electroless Ni-P coating.Carbon fibers in the presence and absence of Ni-P coatings are heat treated and the structural changes are characterized by X-ray diffraction and Raman spectroscopy,both of which indicate that the graphitization of PAN-based carbon fibers are accelerated by both the anodization treatment and the catalysts Ni-P.Using the anodized carbon fibers,the routine two-step pretreatment,sensitization and activation,is not needed.
基金sponsored by the National Natural Science Foundation of China(U1904216)the QIBEBT I201922,Dalian National Laboratory for Clean Energy(DNL),CAS。
文摘Sodium metal battery(SMB)technology is one of the most promising candidates for next-generation rechargeable energy storage systems due to its high theoretical capacity and economical costeffectiveness.Unfortunately,its practical implementation is hindered by several challenges including short life-span and fast capacity decay,which is closely related to the uncontrollable generation of the sodium dendrites.Herein,a nitrogen and oxygen co-doped three-dimensional carbon cloth with hollow tubular fiber units was constructed as the host material for Na plating(Na@CC)to tackle these challenges.The obtained composite electrode can effectively reduce the nucleation overpotential of Na,guide the homogeneous Na^(+)flux,increase the kinetics of Na electrodeposition,lower the effective current density and eventually suppress the formation of electrochemically inactive Na dendrites.As a result,batteries built with the Na@CC composites exhibited stable long-term cycling stability.To gain an in-depth and comprehensive understanding of such phenomena,non-destructive and three-dimensional synchrotron X-ray tomography was employed to investigate the cycled batteries.Moreover,the COMSOL Multiphysics simulation was further employed to reveal the Na electrodeposition mechanisms.The current work not only showcases the feasibility of currently proposed sodiophilic 3 D Na@CC composite electrode but also provides fundamental insights into the underlying working mechanisms that govern its outstanding electrochemical performance.
基金This work has been carried out with the support of The Chinese Postdoctoral Science Fund and The Special Funds for the Major State Basic Research Projects G19990650.
文摘A method of concentration analysis based on X-ray photoelectron spectroscopy (XPS) results was introduced. The concentration of Ce-rich conversion coating on the anodized Al based metal matrix composites AI6061/SiCp was then studied according to this method. The results revealed that the Ce conversion coating on the anodized AI6061/SiCp consisted of Al oxide, Ce oxide and Ce hydroxide. The state of Ce element exhibited the mixture of Ce3+ and Ce4+. Some of Cell I was oxidized to be CelV in the outer layer coating.
文摘Using implants for dental applications are well-accepted procedures as one of the solutions for periodontal defect repair. Suitable design and materials, their reaction with the surrounding hard tissues and interfacial biomechanical properties are still considered to be the primary criteria which need to be addressed. The purpose of present study was to evaluate the bone repair around pure titanium implants and porous surface using anodic oxidation technique, after their insertion in tibiae of rats (n = 15). Five animals received pure titanium-surface implants in tibia, 5 rough-surface implants (TiO2/Ti) in tibia and last five acted as control group. The interfacial integrity and compositional variation along the interface were studied using scanning electron microscope (SEM) with energy dispersive analysis of X-ray (EDX) and histopathology after 2 months. The rats were sacrificed 8 weeks after surgery and fragments of the tibiae containing the implants were submitted to histological analyses to evaluate new bone formation at the implant-bone interface as well as the tibiae were radio graphed. The SEM-EDX results confirmed the initial stability for the Ti implant, but the regeneration of new bone formation was faster in the case of TiO2/Ti implant, and hence could be used for faster healing. The results of the histological analysis showed that osseointegration occurred for both types of implants with similar quality of bone tissue. In conclusion, the porous-surface implants contributed to the osseointegration because they provide a larger contact area with surface roughness at implant-bone interface can help into the formation of physico-chemical bondage with the surrounding hard tissues.
文摘This research is aimed at preparing nano (WO3:Sn) thin film, so that manufacturing anode electrode for a cell electrolysis to produce hydrogen fuel, this thin film was prepared on glass substrates by using deposition laser pulse (LPD) technique have been studying optical properties through the spectra of absorbance and transmittance, was determine the optical energy gap was observed that the permeability increases with the wavelength found that these films have high transmittance in the visible spectral region. The allowed direct band gap was found to increase from (2.9 eV) structured characteristics was studied through the analysis of X-ray diffraction (XRD) of the prepared film for determining the yielding phase which are to set the with standard tables. Also, the sample was tested atomic force microscope to identify the roughness of prepared films surface, and has been the study of the volume of gas output voltages with change, time and current.
基金The authors acknowledge the support by National Natural Science Foundation of China(51871133)Taishan Scholar Foundation of Shan-dong Province,the Key Research and Development Program of Shandong Province(2021ZLGX01)the program of Jinan Science and Tech-nology Bureau(2019GXRC001).
文摘Magnesium-ion batteries(MIBs)are promising alternatives to lithium-ion batteries due to their safety and high theoretical specific capacity,and the abundance of magnesium reserves.However,their anodes and electro-lytes severely restrict the development of MIBs,so alloy-type anodes provide an effective strategy to circum-vent the surface passivation issue encountered with Mg metal in conventional electrolytes.Theoretically,a germanium anode can deliver a high specific capacity of 1476 mAh g?1,but hitherto,no experimental reports have described Ge in MIBs.Herein,we experimentally verified that Ge could reversibly react with Mg 2þions through the design of dual-phase Ge–Bi film electrodes fabricated by magnetron co-sputtering.Notably,a Ge 57 Bi 43 electrode delivered a high specific capacity of 847.5 mAh g?1,owing to the joint alloying reactions of Ge and Bi with Mg,which was much higher than the specific capacity of Bi(around 385 mAh g?1).Moreover,the Ge–Bi anode showed excellent rate performance,good cycling stability,and superior compatibility with conventional electrolytes such as Mg(TFSI)2.More importantly,the Mg storage mechanism of the Ge–Bi anode was unveiled by operando X-ray diffraction,and density functional theory calculations rationalized that the introduction of Bi to form Ge–Bi evidently decreased the defect formation energy and effectively boosted the electrochemical reactivity of Ge with Mg.