Mesogen-jacketed liquid crystalline polymer (MJLCP) has attracted great attention because of its rigid conformation, facile synthesis, and structural controllability. In this feature article, the self-assembly of MJ...Mesogen-jacketed liquid crystalline polymer (MJLCP) has attracted great attention because of its rigid conformation, facile synthesis, and structural controllability. In this feature article, the self-assembly of MJLCP-based block copolymers (BCPs) is briefly reviewed, especially the nanostructures of rod-coil diblock copolymers (diBCPs), rod-rod diBCPs, and triblock copolymers. In addition, the properties of the self-assembled BCPs are also summarized, including their applications as liquid crystalline thermoplastic elastomers and solid polymer electrolytes. The article also discusses the major challenges and future directions in the study of MJLCP-based BCPs.展开更多
The rod-like assembly from BAB block copolymer with hydrophilic middle block A in aqueous solution was described. The copolymer used is polystyrene (PS)39-b-poly(4-vinylpyridine)(P4VP)98-b-PS39 (the subscripts are the...The rod-like assembly from BAB block copolymer with hydrophilic middle block A in aqueous solution was described. The copolymer used is polystyrene (PS)39-b-poly(4-vinylpyridine)(P4VP)98-b-PS39 (the subscripts are the average polymerization degree of corresponding blocks) triblock copolymer with Mw/Mn = 1.15. The aggregates were characterized by transmission electron microscopy and atomic force microscopy. The dependence of rod-like aggregate formation on solvents, pH, and polymer concentrations was investigated. The rod-like aggregates were formed when using dioxane as initial solvent, while spherical micelles were formed using DMF. Elevating pH values from 4 to 5 to 7 and decreasing initial copolymer concentrations from 1.5 wt% to 1.0 wt% to 0.5 wt% were favorable for the formation of well-defined rod-like aggregates. In addition, the bicontinuous rods and lamellae were observed when preparing colloid solutions in appropriate conditions.展开更多
以聚乙二醇单甲醚、丁二酸酐、4-氨基苯乙酮、5-乙酰基-2-氨基二苯甲酮为原料合成了以聚苯基喹啉(PPQ)为硬段、聚乙二醇(PEG)为软段的"刚棒—线团"两嵌段共聚物PPQ b PEG,通过IR、1HNMR对其结构进行了表征,并对PPQ b PEG嵌段...以聚乙二醇单甲醚、丁二酸酐、4-氨基苯乙酮、5-乙酰基-2-氨基二苯甲酮为原料合成了以聚苯基喹啉(PPQ)为硬段、聚乙二醇(PEG)为软段的"刚棒—线团"两嵌段共聚物PPQ b PEG,通过IR、1HNMR对其结构进行了表征,并对PPQ b PEG嵌段共聚物的热稳定性进行研究,结果表明:PPQ b PEG(d)的热稳定性高,PPQ b PEG起始的分解温度为250℃,在250~400℃失重很少,其失重率小于5%,在400~600℃才迅速失重,到620℃时彻底分解。展开更多
文摘Mesogen-jacketed liquid crystalline polymer (MJLCP) has attracted great attention because of its rigid conformation, facile synthesis, and structural controllability. In this feature article, the self-assembly of MJLCP-based block copolymers (BCPs) is briefly reviewed, especially the nanostructures of rod-coil diblock copolymers (diBCPs), rod-rod diBCPs, and triblock copolymers. In addition, the properties of the self-assembled BCPs are also summarized, including their applications as liquid crystalline thermoplastic elastomers and solid polymer electrolytes. The article also discusses the major challenges and future directions in the study of MJLCP-based BCPs.
文摘The rod-like assembly from BAB block copolymer with hydrophilic middle block A in aqueous solution was described. The copolymer used is polystyrene (PS)39-b-poly(4-vinylpyridine)(P4VP)98-b-PS39 (the subscripts are the average polymerization degree of corresponding blocks) triblock copolymer with Mw/Mn = 1.15. The aggregates were characterized by transmission electron microscopy and atomic force microscopy. The dependence of rod-like aggregate formation on solvents, pH, and polymer concentrations was investigated. The rod-like aggregates were formed when using dioxane as initial solvent, while spherical micelles were formed using DMF. Elevating pH values from 4 to 5 to 7 and decreasing initial copolymer concentrations from 1.5 wt% to 1.0 wt% to 0.5 wt% were favorable for the formation of well-defined rod-like aggregates. In addition, the bicontinuous rods and lamellae were observed when preparing colloid solutions in appropriate conditions.
文摘以聚乙二醇单甲醚、丁二酸酐、4-氨基苯乙酮、5-乙酰基-2-氨基二苯甲酮为原料合成了以聚苯基喹啉(PPQ)为硬段、聚乙二醇(PEG)为软段的"刚棒—线团"两嵌段共聚物PPQ b PEG,通过IR、1HNMR对其结构进行了表征,并对PPQ b PEG嵌段共聚物的热稳定性进行研究,结果表明:PPQ b PEG(d)的热稳定性高,PPQ b PEG起始的分解温度为250℃,在250~400℃失重很少,其失重率小于5%,在400~600℃才迅速失重,到620℃时彻底分解。