变压器热点温度作为运行经济性、安全性的关键指标,是设备在线监测及状态评估中的重点。该文对变压器内部散热进行研究,着眼于饼式绕组及其油道结构,基于能量流向建立绕组温度变化的物理模型。基于这一模型,在一台内置分布式传感光纤的1...变压器热点温度作为运行经济性、安全性的关键指标,是设备在线监测及状态评估中的重点。该文对变压器内部散热进行研究,着眼于饼式绕组及其油道结构,基于能量流向建立绕组温度变化的物理模型。基于这一模型,在一台内置分布式传感光纤的110kV三相ONAN变压器上开展试验研究,使用分布式光纤测温(distributed temperature sensing,DTS)技术对运行状况下的绕组整体温度分布进行实时监测,分析绕组在ONAN冷却方式下的散热状况。在变压器启动初期,绕组各处散热量较低,温升速率较快。约2 h后,各饼散热量基本与损耗相一致,散热率可达98%以上,因此将这一阶段称为准稳态。准稳态阶段,绕组整体散热率基本一致。负载变化前期不同位置散热量的差异是温度梯度形成的主要原因。基于DTS手段及散热器进出口处油温,提出绕组每饼平均对流换热系数的计算方法,基于无量纲数建立绕组内外表面局部对流换热系数的计算方法,对不同位置、负载率下两种对流换热系数的变化规律进行分析获得了绕组运行过程中对流换热系数分布规律及变化趋势。展开更多
针对电动车辆无线电能传输(wireless power transfer,WPT)系统存在的半导体性能有限和定位困难的问题,提出了一种多对一高压无线充电自由定位系统。该系统采用逆变器串联输入的设计来适应高压应用场景,同时利用多绕组变压器实现逆变器...针对电动车辆无线电能传输(wireless power transfer,WPT)系统存在的半导体性能有限和定位困难的问题,提出了一种多对一高压无线充电自由定位系统。该系统采用逆变器串联输入的设计来适应高压应用场景,同时利用多绕组变压器实现逆变器的等效并联输出和向多路发射回路传输电能的功能,并采用了多对一的设计以扩大电动车的定位范围以实现无线充电的自由定位功能。为分析多绕组变压器的工作机理和研究多对一拓扑的能量传输特性,进行了等效电路分析和MATLAB仿真,并制作实验室原型样机进行了实验验证。基于实验和仿真结果,提出了一种基于多对一WPT拓扑的混合工作模式,可以有效地扩大电动车辆无线充电时的定位范围。研究和分析表明,文中所提出的拓扑结构可以有效地提高系统的输入电压以应用于高压场景,并能有效扩大电动车辆无线充电时的定位范围以实现自由定位。展开更多
文摘变压器热点温度作为运行经济性、安全性的关键指标,是设备在线监测及状态评估中的重点。该文对变压器内部散热进行研究,着眼于饼式绕组及其油道结构,基于能量流向建立绕组温度变化的物理模型。基于这一模型,在一台内置分布式传感光纤的110kV三相ONAN变压器上开展试验研究,使用分布式光纤测温(distributed temperature sensing,DTS)技术对运行状况下的绕组整体温度分布进行实时监测,分析绕组在ONAN冷却方式下的散热状况。在变压器启动初期,绕组各处散热量较低,温升速率较快。约2 h后,各饼散热量基本与损耗相一致,散热率可达98%以上,因此将这一阶段称为准稳态。准稳态阶段,绕组整体散热率基本一致。负载变化前期不同位置散热量的差异是温度梯度形成的主要原因。基于DTS手段及散热器进出口处油温,提出绕组每饼平均对流换热系数的计算方法,基于无量纲数建立绕组内外表面局部对流换热系数的计算方法,对不同位置、负载率下两种对流换热系数的变化规律进行分析获得了绕组运行过程中对流换热系数分布规律及变化趋势。
文摘针对电动车辆无线电能传输(wireless power transfer,WPT)系统存在的半导体性能有限和定位困难的问题,提出了一种多对一高压无线充电自由定位系统。该系统采用逆变器串联输入的设计来适应高压应用场景,同时利用多绕组变压器实现逆变器的等效并联输出和向多路发射回路传输电能的功能,并采用了多对一的设计以扩大电动车的定位范围以实现无线充电的自由定位功能。为分析多绕组变压器的工作机理和研究多对一拓扑的能量传输特性,进行了等效电路分析和MATLAB仿真,并制作实验室原型样机进行了实验验证。基于实验和仿真结果,提出了一种基于多对一WPT拓扑的混合工作模式,可以有效地扩大电动车辆无线充电时的定位范围。研究和分析表明,文中所提出的拓扑结构可以有效地提高系统的输入电压以应用于高压场景,并能有效扩大电动车辆无线充电时的定位范围以实现自由定位。