提出了一种基于变量预测模型(Variable predictive model based class discriminate,简称VPMCD)和改进固有时间尺度分解(Intrinsic time-scale decomposition,简称ITD)算法的滚动轴承故障诊断方法。VPMCD方法充分利用了特征值之间的相...提出了一种基于变量预测模型(Variable predictive model based class discriminate,简称VPMCD)和改进固有时间尺度分解(Intrinsic time-scale decomposition,简称ITD)算法的滚动轴承故障诊断方法。VPMCD方法充分利用了特征值之间的相互内在关系来建立预测模型,并以这些模型对待诊断样本的特征值的预测结果作为分类依据来进行模式识别。ITD方法能自适应地将非平稳信号分解成为若干单分量信号(固有旋转分量,Proper rotation component,简称PRC)之和。首先对ITD算法进行了改进;接着采用改进ITD算法对原始振动信号进行分解得到多个内禀尺度分量(Intrinsic scale component,简称ISC);然后对包含主要故障信息的若干内禀尺度分量建立对数正态分布模型,并提取其对数均值和对数标准差作为故障特征值;最后采用VPMCD模式识别方法得到各故障特征值的预测模型,并利用预测模型对待诊断样本的故障类型和工作状态进行分类和识别。对滚动轴承正常、外圈故障和内圈故障振动信号的分析结果表明了该方法的有效性。展开更多
将支持向量机(Support V ectorM ach ine,简称SVM)、经验模态分解(Em p irica lM ode D ecom pos ition,简称EM D)方法和AR(A u to-R egress ive,简称AR)模型相结合应用于滚动轴承故障诊断中。该方法首先对滚动轴承振动信号进行经验模...将支持向量机(Support V ectorM ach ine,简称SVM)、经验模态分解(Em p irica lM ode D ecom pos ition,简称EM D)方法和AR(A u to-R egress ive,简称AR)模型相结合应用于滚动轴承故障诊断中。该方法首先对滚动轴承振动信号进行经验模态分解,将其分解为多个内禀模态函数(In trins ic M ode Function,简称IM F)之和,然后对每一个IM F分量建立AR模型,最后提取模型的自回归参数和残差的方差作为故障特征向量,并以此作为SVM分类器的输入参数来区分滚动轴承的工作状态和故障类型。实验结果表明,该方法在小样本情况下仍能准确、有效地对滚动轴承的工作状态和故障类型进行分类,从而实现了滚动轴承故障诊断的自动化。展开更多
文摘提出了一种基于变量预测模型(Variable predictive model based class discriminate,简称VPMCD)和改进固有时间尺度分解(Intrinsic time-scale decomposition,简称ITD)算法的滚动轴承故障诊断方法。VPMCD方法充分利用了特征值之间的相互内在关系来建立预测模型,并以这些模型对待诊断样本的特征值的预测结果作为分类依据来进行模式识别。ITD方法能自适应地将非平稳信号分解成为若干单分量信号(固有旋转分量,Proper rotation component,简称PRC)之和。首先对ITD算法进行了改进;接着采用改进ITD算法对原始振动信号进行分解得到多个内禀尺度分量(Intrinsic scale component,简称ISC);然后对包含主要故障信息的若干内禀尺度分量建立对数正态分布模型,并提取其对数均值和对数标准差作为故障特征值;最后采用VPMCD模式识别方法得到各故障特征值的预测模型,并利用预测模型对待诊断样本的故障类型和工作状态进行分类和识别。对滚动轴承正常、外圈故障和内圈故障振动信号的分析结果表明了该方法的有效性。
文摘将支持向量机(Support V ectorM ach ine,简称SVM)、经验模态分解(Em p irica lM ode D ecom pos ition,简称EM D)方法和AR(A u to-R egress ive,简称AR)模型相结合应用于滚动轴承故障诊断中。该方法首先对滚动轴承振动信号进行经验模态分解,将其分解为多个内禀模态函数(In trins ic M ode Function,简称IM F)之和,然后对每一个IM F分量建立AR模型,最后提取模型的自回归参数和残差的方差作为故障特征向量,并以此作为SVM分类器的输入参数来区分滚动轴承的工作状态和故障类型。实验结果表明,该方法在小样本情况下仍能准确、有效地对滚动轴承的工作状态和故障类型进行分类,从而实现了滚动轴承故障诊断的自动化。