in this paper, an electromechanically coupled mathematic model of multi-roller driving system for belt conveyor is set up, and the computing equations for dynamic displacement and dynamic tension of the conveyor are a...in this paper, an electromechanically coupled mathematic model of multi-roller driving system for belt conveyor is set up, and the computing equations for dynamic displacement and dynamic tension of the conveyor are also formulated when the hoister is used for straining. Based on the belt conveyor of main inclined shaft in Chengzhuang coal mine, the driving torque, driving power and starting-speed characteristic of each electric motor are studied and measured when multi-roller variable-frequency drive (power distribution 2∶1) is used. The optimal control and the optimal starting-acceleration of the multi-roller variable-frequency drive are determined by a large number of industrial experiments and theoretical calculations.展开更多
Ore conveyor belt rollers operate in harsh environments,making them prone to premature failure.Their service lives are highly dependent on the stress field and bearing misalignment angle,for which limit values are def...Ore conveyor belt rollers operate in harsh environments,making them prone to premature failure.Their service lives are highly dependent on the stress field and bearing misalignment angle,for which limit values are defined in a standard.In this work,an optimization methodology using metamodels based on radial basis functions is implemented to reduce themass of twomodels of rollers.From a structural point of view,one of the rollers ismade completely of metal,while the other also has some components made of polymeric material.The objective of this study is to develop and apply a parametric structural optimization methodology to minimize the mass of the two models of rollers.To represent the mechanical behavior of the rollers,simulations were performed using the finite element method.During the numerical optimization process,the variable parameters were the dimensions of the shaft and external tube.The geometric configuration that corresponded at the same time to the lowest mass and acceptable ranges for the stress and bearingmisalignment angle was determined.With the proposed methodology,a 32.3% reduction in mass was obtained for a metal roller design and an 18.9% reduction for a polymer roller.In both cases,the constraints were not violated.For the all-metal roller,the safety factors for the maximum stress and bearingmisalignment angle were 1.44 and 1.75,respectively,while for the polymer roller the corresponding figures were 1.50 and 2.23.This work describes a low-computational-cost optimization methodology for roller designs that have been little studied in the literature.Furthermore,the methodology could be adapted for use with other types of rollers and rollers made of different materials.展开更多
文摘in this paper, an electromechanically coupled mathematic model of multi-roller driving system for belt conveyor is set up, and the computing equations for dynamic displacement and dynamic tension of the conveyor are also formulated when the hoister is used for straining. Based on the belt conveyor of main inclined shaft in Chengzhuang coal mine, the driving torque, driving power and starting-speed characteristic of each electric motor are studied and measured when multi-roller variable-frequency drive (power distribution 2∶1) is used. The optimal control and the optimal starting-acceleration of the multi-roller variable-frequency drive are determined by a large number of industrial experiments and theoretical calculations.
基金financed by Vale S.A.Company(www.vale.com)and the Institute of Technology Vale(ITV-www.itv.org)through the Project No.SAP 4600048682.
文摘Ore conveyor belt rollers operate in harsh environments,making them prone to premature failure.Their service lives are highly dependent on the stress field and bearing misalignment angle,for which limit values are defined in a standard.In this work,an optimization methodology using metamodels based on radial basis functions is implemented to reduce themass of twomodels of rollers.From a structural point of view,one of the rollers ismade completely of metal,while the other also has some components made of polymeric material.The objective of this study is to develop and apply a parametric structural optimization methodology to minimize the mass of the two models of rollers.To represent the mechanical behavior of the rollers,simulations were performed using the finite element method.During the numerical optimization process,the variable parameters were the dimensions of the shaft and external tube.The geometric configuration that corresponded at the same time to the lowest mass and acceptable ranges for the stress and bearingmisalignment angle was determined.With the proposed methodology,a 32.3% reduction in mass was obtained for a metal roller design and an 18.9% reduction for a polymer roller.In both cases,the constraints were not violated.For the all-metal roller,the safety factors for the maximum stress and bearingmisalignment angle were 1.44 and 1.75,respectively,while for the polymer roller the corresponding figures were 1.50 and 2.23.This work describes a low-computational-cost optimization methodology for roller designs that have been little studied in the literature.Furthermore,the methodology could be adapted for use with other types of rollers and rollers made of different materials.