Due to their robust learning and expression ability for complex features,the deep learning(DL)model plays a vital role in bearing fault diagnosis.However,since there are fewer labeled samples in fault diagnosis,the de...Due to their robust learning and expression ability for complex features,the deep learning(DL)model plays a vital role in bearing fault diagnosis.However,since there are fewer labeled samples in fault diagnosis,the depth of DL models in fault diagnosis is generally shallower than that of DL models in other fields,which limits the diagnostic performance.To solve this problem,a novel transfer residual Swin Transformer(RST)is proposed for rolling bearings in this paper.RST has 24 residual self-attention layers,which use the hierarchical design and the shifted window-based residual self-attention.Combined with transfer learning techniques,the transfer RST model uses pre-trained parameters from ImageNet.A new end-to-end method for fault diagnosis based on deep transfer RST is proposed.Firstly,wavelet transform transforms the vibration signal into a wavelet time-frequency diagram.The signal’s time-frequency domain representation can be represented simultaneously.Secondly,the wavelet time-frequency diagram is the input of the RST model to obtain the fault type.Finally,our method is verified on public and self-built datasets.Experimental results show the superior performance of our method by comparing it with a shallow neural network.展开更多
In this study,an optimized long short-term memory(LSTM)network is proposed to predict the reliability and remaining useful life(RUL)of rolling bearings based on an improved whale-optimized algorithm(IWOA).The multi-do...In this study,an optimized long short-term memory(LSTM)network is proposed to predict the reliability and remaining useful life(RUL)of rolling bearings based on an improved whale-optimized algorithm(IWOA).The multi-domain features are extracted to construct the feature dataset because the single-domain features are difficult to characterize the performance degeneration of the rolling bearing.To provide covariates for reliability assessment,a kernel principal component analysis is used to reduce the dimensionality of the features.A Weibull distribution proportional hazard model(WPHM)is used for the reliability assessment of rolling bearing,and a beluga whale optimization(BWO)algorithm is combined with maximum likelihood estimation(MLE)to improve the estimation accuracy of the model parameters of the WPHM,which provides the data basis for predicting reliability.Considering the possible gradient explosion by training the rolling bearing lifetime data and the difficulties in selecting the key network parameters,an optimized LSTM network called the improved whale optimization algorithm-based long short-term memory(IWOA-LSTM)network is proposed.As IWOA better jumps out of the local optimization,the fitting and prediction accuracies of the network are correspondingly improved.The experimental results show that compared with the whale optimization algorithm-based long short-term memory(WOA-LSTM)network,the reliability prediction and RUL prediction accuracies of the rolling bearing are improved by the proposed IWOA-LSTM network.展开更多
Rolling bearings are key components of the drivetrain in wind turbines,and their health is critical to wind turbine operation.In practical diagnosis tasks,the vibration signal is usually interspersed with many disturb...Rolling bearings are key components of the drivetrain in wind turbines,and their health is critical to wind turbine operation.In practical diagnosis tasks,the vibration signal is usually interspersed with many disturbing components,and the variation of operating conditions leads to unbalanced data distribution among different conditions.Although intelligent diagnosis methods based on deep learning have been intensively studied,it is still challenging to diagnose rolling bearing faults with small amounts of samples.To address the above issue,we introduce the deep residual joint transfer strategy method for the cross-condition fault diagnosis of rolling bearings.One-dimensional vibration signals are pre-processed by overlapping feature extraction techniques to fully extract fault characteristics.The deep residual network is trained in training tasks with sufficient samples,for fault pattern classification.Subsequently,three transfer strategies are used to explore the generalizability and adaptability of the pre-trained models to the data distribution in target tasks.Among them,the feature transferability between different tasks is explored by model transfer,and it is validated that minimizing data differences of tasks through a dual-stream adaptation structure helps to enhance generalization of the models to the target tasks.In the experiments of rolling bearing faults with unbalanced data conditions,localized faults of motor bearings and planet bearings are successfully identified,and good fault classification results are achieved,which provide guidance for the cross-condition fault diagnosis of rolling bearings with small amounts of training data.展开更多
The existing engineering empirical life analysis models are not capable of considering the constitutive behavior of materials under contact loads;as a consequence,these methods may not be accurate to predict fatigue l...The existing engineering empirical life analysis models are not capable of considering the constitutive behavior of materials under contact loads;as a consequence,these methods may not be accurate to predict fatigue lives of roll-ing bearings.In addition,the contact stress of bearing in operation is cyclically pulsating,it also means that the bear-ing undergo non-symmetrical fatigue loadings.Since the mean stress has great effects on fatigue life,in this work,a novel fatigue life prediction model based on the modified SWT mean stress correction is proposed as a basis of which to estimate the fatigue life of rolling bearings,in which,takes sensitivity of materials and mean stress into account.A compensation factor is introduced to overcome the inaccurate predictions resulted from the Smith,Watson,and Topper(SWT)model that considers the mean stress effect and sensitivity while assuming the sensitivity coefficient of all materials to be 0.5.Moreover,the validation of the model is finalized by several practical experimental data and the comparison to the conventional SWT model.The results show the better performance of the proposed model,especially in the accuracy than the existing SWT model.This research will shed light on a new direction for predicting the fatigue life of rolling bearings.展开更多
In rare cases rolling bearings fail by WEC (white etching crack) damage before reaching their calculated rating life, if so called additional loads are applied on the bearing in addition to the normal Hertzian stre...In rare cases rolling bearings fail by WEC (white etching crack) damage before reaching their calculated rating life, if so called additional loads are applied on the bearing in addition to the normal Hertzian stress (PHz). A number of additional loads have been identified by means of tests with rolling bearings. These can be small direct currents as a result of electrostatic charge or large alternating currents from inverter-fed drives that unintentionally flow through the bearing. WEC damages can also be initiated by a pure mechanical additional load which is dependent on factors including the bearing kinematics but also on the dynamics of the drive train. The current state of knowledge on this subject is presented and taken as the basis for developing a hypothesis on the WEC damage mechanism. If load situations critical for WEC cannot be avoided, the risk of WEC can be considerably reduced by the selection of suitable materials and coatings as well as, in some cases, of suitable lubricants.展开更多
Surface defects,including dents,spalls,and cracks,for rolling element bearings are the most common faults in rotating machinery.The accurate model for the time-varying excitation is the basis for the vibration mechani...Surface defects,including dents,spalls,and cracks,for rolling element bearings are the most common faults in rotating machinery.The accurate model for the time-varying excitation is the basis for the vibration mechanism analysis and fault feature extraction.However,in conventional investigations,this issue is not well and fully addressed from the perspective of theoretical analysis and physical derivation.In this study,an improved analytical model for time-varying displacement excitations(TVDEs)caused by surface defects is theoretically formulated.First and foremost,the physical mechanism for the effect of defect sizes on the physical process of rolling element-defect interaction is revealed.According to the physical interaction mechanism between the rolling element and different types of defects,the relationship between time-varying displacement pulse and defect sizes is further analytically derived.With the obtained time-varying displacement pulse,the dynamic model for the deep groove bearings considering the internal excitation caused by the surface defect is established.The nonlinear vibration responses and fault features induced by surface defects are analyzed using the proposed TVDE model.The results suggest that the presence of surface defects may result in the occurrence of the dual-impulse phenomenon,which can serve as indexes for surface-defect fault diagnosis.展开更多
The condition monitoring and fault diagnosis of rolling element bearings are particularly crucial in rotating mechanical applications in industry. A bearing fault signal contains information not only about fault condi...The condition monitoring and fault diagnosis of rolling element bearings are particularly crucial in rotating mechanical applications in industry. A bearing fault signal contains information not only about fault condition and fault type but also the severity of the fault. This means fault severity quantitative analysis is one of most active and valid ways to realize proper maintenance decision. Aiming at the deficiency of the research in bearing single point pitting fault quantitative diagnosis, a new back-propagation neural network method based on wavelet packet decomposition coefficient entropy is proposed. The three levels of wavelet packet coefficient entropy(WPCE) is introduced as a characteristic input vector to the BPNN. Compared with the wavelet packet decomposition energy ratio input vector, WPCE shows more sensitive in distinguishing from the different fault severity degree of the measured signal. The engineering application results show that the quantitative trend fault diagnosis is realized in the different fault degree of the single point bearing pitting fault. The breakthrough attempt from quantitative to qualitative on the pattern recognition of rolling element bearings fault diagnosis is realized.展开更多
Fault diagnosis technology has been widely applied and is an important part of ensuring the safe operation of mechanical equipment.In response to the problem of frequent faults in rolling bearings,this paper designs a...Fault diagnosis technology has been widely applied and is an important part of ensuring the safe operation of mechanical equipment.In response to the problem of frequent faults in rolling bearings,this paper designs a rolling bearing fault diagnosis method based on convolutional capsule network(CCN).More specifically,the original vibration signal is converted into a two-dimensional time–frequency image using continuous wavelet transform(CWT),and the feature extraction is performed on the two-dimensional time–frequency image using the convolution layer at the front end of the network,and the extracted features are input into the capsule network.The capsule network converts the extracted features into vector neurons,and the dynamic routing algorithm is used to achieve feature transfer and output the results of fault diagnosis.Two different datasets are used to compare with other traditional deep learning models to verify the fault diagnosis capability of the method.The results show that the CCN has good diagnostic capability under different working conditions,even in the presence of noise and insufficient samples,compared to other models.This method contributes to the safe and reliable operation of mechanical equipment and is suitable for other rotating scenarios.展开更多
Rotating machinery is important to industrial production. Any failure of rotating machinery, especially the failure of rolling bearings, can lead to equipment shutdown and even more serious incidents. Therefore, accur...Rotating machinery is important to industrial production. Any failure of rotating machinery, especially the failure of rolling bearings, can lead to equipment shutdown and even more serious incidents. Therefore, accurate residual life prediction plays a crucial role in guaranteeing machine operation safety and reliability and reducing maintenance cost. In order to increase the forecasting precision of the remaining useful life(RUL) of the rolling bearing, an advanced approach combining elastic net with long short-time memory network(LSTM) is proposed, and the new approach is referred to as E-LSTM. The E-LSTM algorithm consists of an elastic mesh and LSTM, taking temporal-spatial correlation into consideration to forecast the RUL through the LSTM. To solve the over-fitting problem of the LSTM neural network during the training process, the elastic net based regularization term is introduced to the LSTM structure.In this way, the change of the output can be well characterized to express the bearing degradation mode. Experimental results from the real-world data demonstrate that the proposed E-LSTM method can obtain higher stability and relevant values that are useful for the RUL forecasting of bearing. Furthermore, these results also indicate that E-LSTM can achieve better performance.展开更多
A novel data-driven method based on Gaussian mixture model (GMM) and distance evaluation technique (DET) is proposed to predict the remaining useful life (RUL) of rolling bearings. The data sets are clustered by...A novel data-driven method based on Gaussian mixture model (GMM) and distance evaluation technique (DET) is proposed to predict the remaining useful life (RUL) of rolling bearings. The data sets are clustered by GMM to divide all data sets into several health states adaptively and reasonably. The number of clusters is determined by the minimum description length principle. Thus, either the health state of the data sets or the number of the states is obtained automatically. Meanwhile, the abnormal data sets can be recognized during the clustering process and removed from the training data sets. After obtaining the health states, appropriate features are selected by DET for increasing the classification and prediction accuracy. In the prediction process, each vibration signal is decomposed into several components by empirical mode decomposition. Some common statis- tical parameters of the components are calculated first and then the features are clustered using GMM to divide the data sets into several health states and remove the abnormal data sets. Thereafter, appropriate statistical parameters of the generated components are selected using DET. Finally, least squares support vector machine is utilized to predict the RUL of rolling bearings.Experimental results indicate that the proposed method reliably predicts the RUL of rolling bearings.展开更多
Working conditions of rolling bearings of wind turbine generators are complicated, and their vibration signals often show non-linear and non-stationary characteristics. In order to improve the efficiency of feature ex...Working conditions of rolling bearings of wind turbine generators are complicated, and their vibration signals often show non-linear and non-stationary characteristics. In order to improve the efficiency of feature extraction of wind turbine rolling bearings and to strengthen the feature information, a new structural element and an adaptive algorithm based on the peak energy are proposed,which are combined with spectral correlation analysis to form a fault diagnosis algorithm for wind turbine rolling bearings. The proposed method firstly addresses the problem of impulsive signal omissions that are prone to occur in the process of fault feature extraction of traditional structural elements and proposes a "W" structural element to capture more characteristic information. Then, the proposed method selects the scale of multi-scale mathematical morphology, aiming at the problem of multi-scale mathematical morphology scale selection and structural element expansion law. An adaptive algorithm based on peak energy is proposed to carry out morphological scale selection and structural element expansion by improving the computing efficiency and enhancing the feature extraction effect.Finally, the proposed method performs spectral correlation analysis in the frequency domain for an unknown signal of the extracted feature and identifies the fault based on the correlation coefficient. The method is verified by numerical examples using experimental rig bearing data and actual wind field acquisition data and compared with traditional triangular and flat structural elements. The experimental results show that the new structural elements can more effectively extract the pulses in the signal and reduce noise interference,and the fault-diagnosis algorithm can accurately identify the fault category and improve the reliability of the results.展开更多
Purpose-The purpose of this paper is to provide a fault diagnosis method for rolling bearings.Rolling bearings are widely used in industrial appliances,and their fault diagnosis is of great importance and has drawn mo...Purpose-The purpose of this paper is to provide a fault diagnosis method for rolling bearings.Rolling bearings are widely used in industrial appliances,and their fault diagnosis is of great importance and has drawn more and more attention.Based on the common failure mechanism of failure modes of rolling bearings,this paper proposes a novel compound data classification method based on the discrete wavelet transform and the support vector machine(SVM)and applies it in the fault diagnosis of rolling bearings.Design/methodology/approach-Vibration signal contains large quantity of information of bearing status and this paper uses various types of wavelet base functions to perform discrete wavelet transform of vibration and denoise.Feature vectors are constructed based on several time-domain indices of the denoised signal.SVM is then used to perform classification and fault diagnosis.Then the optimal wavelet base function is determined based on the diagnosis accuracy.Findings-Experiments of fault diagnosis of rolling bearings are carried out and wavelet functions in several wavelet families were tested.The results show that the SVM classifier with the db4 wavelet base function in the db wavelet family has the best fault diagnosis accuracy.Originality/value-This method provides a practical candidate for the fault diagnosis of rolling bearings in the industrial applications.展开更多
The theory of failure of rolling contact bearings is based on fluctuating high level loading and material fatigue. This theory is unimodal, considering only the solid components of the bearing, and ignoring the liquid...The theory of failure of rolling contact bearings is based on fluctuating high level loading and material fatigue. This theory is unimodal, considering only the solid components of the bearing, and ignoring the liquid phase, which is the lubricant. Bearing life is rather dispersed, reaching a ratio of 20 between the extreme values. Since this theory was established, several exceptional phenomena were detected that could not be explained by it, such as: 1) Pitting damage beyond the contact path;2) Detrimental effect of a minute quantity of water in the lubricant on bearing life. 25 ppm of water in the lubricant brought about shorter bearing life by over than 30%. The bimodal failure theory considers both solid and liquid bearing components. The damaging process of the lubricant evolves from its cavitation. During this process vapor filled cavities are formed in low pressure zones. When these cavities reach high pressure zones they implode exothermally. These implosions cause local high pressure pulses reaching 30,000 at accompanied by a temperature rise of about 2000 degrees K [<a href="#ref1">1</a>]. This paper includes cavitation erosion test results on stainless steel samples by vibratory and water tunnel test rigs. Various methods of lubricant dehydration are presented and evaluated. The main conclusion from this analysis is the use of water-free lubricants, for long life of RC bearings and more uniform service life thereof.展开更多
In order to confirm the early failure cause of a four-row cylindrical roller bearing at the backup roll position of a six-high cold sheet mill, its lubrication behavior under harsh operating conditions is investigated...In order to confirm the early failure cause of a four-row cylindrical roller bearing at the backup roll position of a six-high cold sheet mill, its lubrication behavior under harsh operating conditions is investigated. Through establishing and solving the Elastohydrodynamic Lubrication (EHL) model of the roller-inner raceway contact region, the minimum oil film thickness and the real lubrication performance are achieved. The results show the bearing failures come from the poor oil film thickness in the case of high temperature and low rotational speed, which leads to contact wear. So various approaches to improve bearing life via improving lubrication are compared. It has been proved decreasing surface roughness of both contact bodies is an effective way.展开更多
The vibration signals of rolling element bearing are produced by a combination of periodic and random processes due to the machine’s rotation cycle and interaction with the real world. The combination of such compone...The vibration signals of rolling element bearing are produced by a combination of periodic and random processes due to the machine’s rotation cycle and interaction with the real world. The combination of such components can give rise to signals, which have periodically time-varying ensemble statistical and are best considered as cyclostationary. When the early fault occurs, the background noise is very heavy, it is difficult to disclose the latent periodic components successfully using cyclostationary analysis alone. In this paper the degree of cyclostationarity is combined with wavelet filtering for detection of rolling element bearing early faults. Using the proposed entropy minimization rule. The parameters of the wavelet filter are optimized. This method is shown to be effective in detecting rolling element bearing early fault when cyclostationary analysis by itself fails.展开更多
<span><span><span style="font-family:Verdana;">The prevailing cumulative failure curves of Rolling Contact Bearings (RCB) have two main drawbacks: they begin at the origin and have a large ...<span><span><span style="font-family:Verdana;">The prevailing cumulative failure curves of Rolling Contact Bearings (RCB) have two main drawbacks: they begin at the origin and have a large dispersion. The purpose of this study is to develop an ideal failure curve and overcome the present drawbacks. The ideal failure curve of RC bearings is obtained by applying a water-free lubricant to the tested bearings. This eliminates the cavitation erosion from the Bimodal failure mechanism and the synergistic effect with the mechanical failure mode</span><span style="font-family:Verdana;">.</span></span></span><span><span><span> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">This</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> new concept considers the fatigue process involved in the failure mechanism and suggests decreasing the dispersion of bearing life.</span></span></span>展开更多
Early fault diagnosis of bearings is crucial for ensuring safe and reliable operations.Convolutional neural networks(CNNs)have achieved significant breakthroughs in machinery fault diagnosis.However,complex and varyin...Early fault diagnosis of bearings is crucial for ensuring safe and reliable operations.Convolutional neural networks(CNNs)have achieved significant breakthroughs in machinery fault diagnosis.However,complex and varying working conditions can lead to inter-class similarity and intra-class variability in datasets,making it more challenging for CNNs to learn discriminative features.Furthermore,CNNs are often considered“black boxes”and lack sufficient interpretability in the fault diagnosis field.To address these issues,this paper introduces a residual mixed domain attention CNN method,referred to as RMA-CNN.This method comprises multiple residual mixed domain attention modules(RMAMs),each employing one attention mechanism to emphasize meaningful features in both time and channel domains.This significantly enhances the network’s ability to learn fault-related features.Moreover,we conduct an in-depth analysis of the inherent feature learning mechanism of the attention module RMAM to improve the interpretability of CNNs in fault diagnosis applications.Experiments conducted on two datasets—a high-speed aeronautical bearing dataset and a motor bearing dataset—demonstrate that the RMA-CNN achieves remarkable results in diagnostic tasks.展开更多
In order to more accurately predict the contact fatigue life of rolling bearing, a prediction method of fatigue life of rolling bearing is proposed based on elastohydrodynamic lubrication (EHL), the 3-paameter Weibu...In order to more accurately predict the contact fatigue life of rolling bearing, a prediction method of fatigue life of rolling bearing is proposed based on elastohydrodynamic lubrication (EHL), the 3-paameter Weibull distribution ad fatigue strength. First,the contact stress considering elliptical EHL is obtained by mapping film pressure onto the Hertz zone. Then,the basic strength model of rolling bearing based on the 3-parameter Weibull distribution is deduced by the series connection reliability theory. Considering the effect of the type of stress, variation of shape and fuctuation of load, the mathematical models of the 尸 -tS-TV curve of the minimum life and the characteristic life for rolling bearing are established, respectively, and thus the prediction model of fatigue life of rolling bearing based on the 3-paameter Weibull distribution and fatigue strength is further deduced. Finally, the contact fatigue life obtained by the proposed method ad the latest international standard (IS0281: 2007) about the fatigue life prediction of rolling bearing are compared with those obtained by the statistical method. Results show that the proposed prediction method is effective and its relative error is smaier than that of the latest international standard (IS0281: 2007) with reliability R 〉 0. 93.展开更多
As the key component in aeroengine rotor systems,the health status of rolling bearings directly influences the reliability and safety of aeroengine rotor systems.In order to monitor rolling bearing conditions,a fusion...As the key component in aeroengine rotor systems,the health status of rolling bearings directly influences the reliability and safety of aeroengine rotor systems.In order to monitor rolling bearing conditions,a fusion fault diagnosis method,namely empirical mode decomposition(EMD)-Mahalanobis distance(E2MD)and improved wavelet threshold(IWT)(E2MD-IWT)for vibrational signals and acoustic emission(AE)signals is developed to improve the diagnostic accuracy of rolling bearings.The IWT method is proposed with a hard wavelet threshold and a soft wavelet threshold.Moreover,it is shown to be effective through numerical simulation.EMD is utilized to process the original AE signals for rolling bearings so as to generate a set of components called intrinsic modes functions(IMFs).The Mahalanobis distance(MD)approach is introduced in order to determine the smallest MD between the original AE signal and IMF components.Then,the IWT approach is employed to select the IMF components with the largest MD.It is demonstrated that the proposed E2MD-IWT method for vibrational and AE signals can improve rolling bearing fault diagnosis,beyond its ability to effectively eliminate noise signals.This study offers a promising approach to fault diagnosis for rolling bearings in aeroengines with regard to vibration signals and AE signals.展开更多
This paper deals with the test research on noise and fatigue life of the composite rolling bearings which have been developed recently. The test results show that the-composite rolling bearings have remarkable advanta...This paper deals with the test research on noise and fatigue life of the composite rolling bearings which have been developed recently. The test results show that the-composite rolling bearings have remarkable advantages of low noise and great load-bearing capacity over plastic ones.展开更多
基金supported in part by the National Natural Science Foundation of China(General Program)under Grants 62073193 and 61873333in part by the National Key Research and Development Project(General Program)under Grant 2020YFE0204900in part by the Key Research and Development Plan of Shandong Province(General Program)under Grant 2021CXGC010204.
文摘Due to their robust learning and expression ability for complex features,the deep learning(DL)model plays a vital role in bearing fault diagnosis.However,since there are fewer labeled samples in fault diagnosis,the depth of DL models in fault diagnosis is generally shallower than that of DL models in other fields,which limits the diagnostic performance.To solve this problem,a novel transfer residual Swin Transformer(RST)is proposed for rolling bearings in this paper.RST has 24 residual self-attention layers,which use the hierarchical design and the shifted window-based residual self-attention.Combined with transfer learning techniques,the transfer RST model uses pre-trained parameters from ImageNet.A new end-to-end method for fault diagnosis based on deep transfer RST is proposed.Firstly,wavelet transform transforms the vibration signal into a wavelet time-frequency diagram.The signal’s time-frequency domain representation can be represented simultaneously.Secondly,the wavelet time-frequency diagram is the input of the RST model to obtain the fault type.Finally,our method is verified on public and self-built datasets.Experimental results show the superior performance of our method by comparing it with a shallow neural network.
基金supported by the Department of Education of Liaoning Province under Grant JDL2020020the Transportation Science and Technology Project of Liaoning Province under Grant 202243.
文摘In this study,an optimized long short-term memory(LSTM)network is proposed to predict the reliability and remaining useful life(RUL)of rolling bearings based on an improved whale-optimized algorithm(IWOA).The multi-domain features are extracted to construct the feature dataset because the single-domain features are difficult to characterize the performance degeneration of the rolling bearing.To provide covariates for reliability assessment,a kernel principal component analysis is used to reduce the dimensionality of the features.A Weibull distribution proportional hazard model(WPHM)is used for the reliability assessment of rolling bearing,and a beluga whale optimization(BWO)algorithm is combined with maximum likelihood estimation(MLE)to improve the estimation accuracy of the model parameters of the WPHM,which provides the data basis for predicting reliability.Considering the possible gradient explosion by training the rolling bearing lifetime data and the difficulties in selecting the key network parameters,an optimized LSTM network called the improved whale optimization algorithm-based long short-term memory(IWOA-LSTM)network is proposed.As IWOA better jumps out of the local optimization,the fitting and prediction accuracies of the network are correspondingly improved.The experimental results show that compared with the whale optimization algorithm-based long short-term memory(WOA-LSTM)network,the reliability prediction and RUL prediction accuracies of the rolling bearing are improved by the proposed IWOA-LSTM network.
基金This work was supported by National Natural Science Foundation of China(52275080).The authors are grateful to the reviewers for their valuable comments and to Bei Wang for her help in polishing the English of this paper.
文摘Rolling bearings are key components of the drivetrain in wind turbines,and their health is critical to wind turbine operation.In practical diagnosis tasks,the vibration signal is usually interspersed with many disturbing components,and the variation of operating conditions leads to unbalanced data distribution among different conditions.Although intelligent diagnosis methods based on deep learning have been intensively studied,it is still challenging to diagnose rolling bearing faults with small amounts of samples.To address the above issue,we introduce the deep residual joint transfer strategy method for the cross-condition fault diagnosis of rolling bearings.One-dimensional vibration signals are pre-processed by overlapping feature extraction techniques to fully extract fault characteristics.The deep residual network is trained in training tasks with sufficient samples,for fault pattern classification.Subsequently,three transfer strategies are used to explore the generalizability and adaptability of the pre-trained models to the data distribution in target tasks.Among them,the feature transferability between different tasks is explored by model transfer,and it is validated that minimizing data differences of tasks through a dual-stream adaptation structure helps to enhance generalization of the models to the target tasks.In the experiments of rolling bearing faults with unbalanced data conditions,localized faults of motor bearings and planet bearings are successfully identified,and good fault classification results are achieved,which provide guidance for the cross-condition fault diagnosis of rolling bearings with small amounts of training data.
基金This study is financially supported by the National Natural Science Foundation of China(Grant No.51875089).
文摘The existing engineering empirical life analysis models are not capable of considering the constitutive behavior of materials under contact loads;as a consequence,these methods may not be accurate to predict fatigue lives of roll-ing bearings.In addition,the contact stress of bearing in operation is cyclically pulsating,it also means that the bear-ing undergo non-symmetrical fatigue loadings.Since the mean stress has great effects on fatigue life,in this work,a novel fatigue life prediction model based on the modified SWT mean stress correction is proposed as a basis of which to estimate the fatigue life of rolling bearings,in which,takes sensitivity of materials and mean stress into account.A compensation factor is introduced to overcome the inaccurate predictions resulted from the Smith,Watson,and Topper(SWT)model that considers the mean stress effect and sensitivity while assuming the sensitivity coefficient of all materials to be 0.5.Moreover,the validation of the model is finalized by several practical experimental data and the comparison to the conventional SWT model.The results show the better performance of the proposed model,especially in the accuracy than the existing SWT model.This research will shed light on a new direction for predicting the fatigue life of rolling bearings.
文摘In rare cases rolling bearings fail by WEC (white etching crack) damage before reaching their calculated rating life, if so called additional loads are applied on the bearing in addition to the normal Hertzian stress (PHz). A number of additional loads have been identified by means of tests with rolling bearings. These can be small direct currents as a result of electrostatic charge or large alternating currents from inverter-fed drives that unintentionally flow through the bearing. WEC damages can also be initiated by a pure mechanical additional load which is dependent on factors including the bearing kinematics but also on the dynamics of the drive train. The current state of knowledge on this subject is presented and taken as the basis for developing a hypothesis on the WEC damage mechanism. If load situations critical for WEC cannot be avoided, the risk of WEC can be considerably reduced by the selection of suitable materials and coatings as well as, in some cases, of suitable lubricants.
基金This work is sponsored by the National Natural Science Foundation of China(Nos.52105117&52105118).
文摘Surface defects,including dents,spalls,and cracks,for rolling element bearings are the most common faults in rotating machinery.The accurate model for the time-varying excitation is the basis for the vibration mechanism analysis and fault feature extraction.However,in conventional investigations,this issue is not well and fully addressed from the perspective of theoretical analysis and physical derivation.In this study,an improved analytical model for time-varying displacement excitations(TVDEs)caused by surface defects is theoretically formulated.First and foremost,the physical mechanism for the effect of defect sizes on the physical process of rolling element-defect interaction is revealed.According to the physical interaction mechanism between the rolling element and different types of defects,the relationship between time-varying displacement pulse and defect sizes is further analytically derived.With the obtained time-varying displacement pulse,the dynamic model for the deep groove bearings considering the internal excitation caused by the surface defect is established.The nonlinear vibration responses and fault features induced by surface defects are analyzed using the proposed TVDE model.The results suggest that the presence of surface defects may result in the occurrence of the dual-impulse phenomenon,which can serve as indexes for surface-defect fault diagnosis.
基金Supported by National Natural Science Foundation of China(Grant Nos.51175007,51075023)
文摘The condition monitoring and fault diagnosis of rolling element bearings are particularly crucial in rotating mechanical applications in industry. A bearing fault signal contains information not only about fault condition and fault type but also the severity of the fault. This means fault severity quantitative analysis is one of most active and valid ways to realize proper maintenance decision. Aiming at the deficiency of the research in bearing single point pitting fault quantitative diagnosis, a new back-propagation neural network method based on wavelet packet decomposition coefficient entropy is proposed. The three levels of wavelet packet coefficient entropy(WPCE) is introduced as a characteristic input vector to the BPNN. Compared with the wavelet packet decomposition energy ratio input vector, WPCE shows more sensitive in distinguishing from the different fault severity degree of the measured signal. The engineering application results show that the quantitative trend fault diagnosis is realized in the different fault degree of the single point bearing pitting fault. The breakthrough attempt from quantitative to qualitative on the pattern recognition of rolling element bearings fault diagnosis is realized.
基金Science and Technology Planning Project of Inner Mongolia of China under contract number 2021GG0346.
文摘Fault diagnosis technology has been widely applied and is an important part of ensuring the safe operation of mechanical equipment.In response to the problem of frequent faults in rolling bearings,this paper designs a rolling bearing fault diagnosis method based on convolutional capsule network(CCN).More specifically,the original vibration signal is converted into a two-dimensional time–frequency image using continuous wavelet transform(CWT),and the feature extraction is performed on the two-dimensional time–frequency image using the convolution layer at the front end of the network,and the extracted features are input into the capsule network.The capsule network converts the extracted features into vector neurons,and the dynamic routing algorithm is used to achieve feature transfer and output the results of fault diagnosis.Two different datasets are used to compare with other traditional deep learning models to verify the fault diagnosis capability of the method.The results show that the CCN has good diagnostic capability under different working conditions,even in the presence of noise and insufficient samples,compared to other models.This method contributes to the safe and reliable operation of mechanical equipment and is suitable for other rotating scenarios.
基金by National Natural Science Foundation of China(No.61972443)National Key Research and Development Plan Program of China(No.2019YFE0105300)+1 种基金Hunan Provincial Hu-Xiang Young Talents Project of China(No.2018RS3095)Hunan Provincial Natural Science Foundation of China(No.2020JJ5199).
文摘Rotating machinery is important to industrial production. Any failure of rotating machinery, especially the failure of rolling bearings, can lead to equipment shutdown and even more serious incidents. Therefore, accurate residual life prediction plays a crucial role in guaranteeing machine operation safety and reliability and reducing maintenance cost. In order to increase the forecasting precision of the remaining useful life(RUL) of the rolling bearing, an advanced approach combining elastic net with long short-time memory network(LSTM) is proposed, and the new approach is referred to as E-LSTM. The E-LSTM algorithm consists of an elastic mesh and LSTM, taking temporal-spatial correlation into consideration to forecast the RUL through the LSTM. To solve the over-fitting problem of the LSTM neural network during the training process, the elastic net based regularization term is introduced to the LSTM structure.In this way, the change of the output can be well characterized to express the bearing degradation mode. Experimental results from the real-world data demonstrate that the proposed E-LSTM method can obtain higher stability and relevant values that are useful for the RUL forecasting of bearing. Furthermore, these results also indicate that E-LSTM can achieve better performance.
基金Acknowledgements The authors gratefully acknowledge the support of the National Key Research and Development Program of China (Grant No. 2016YFF0203400), the National Natural Science Foundation of China (Grant Nos. 51575168 and 51375152), the Project of National Science and Technology Supporting Plan (Grant No. 2015BAF32B03), and the Science Research Key Program of Educational Department of Hunan Province of China (Grant No. 16A180). The authors appreciate the support provided by the Collaborative Innovation Center of Intelligent New Energy Vehicle, the Hunan Collaborative Innovation Center for Green Car.
文摘A novel data-driven method based on Gaussian mixture model (GMM) and distance evaluation technique (DET) is proposed to predict the remaining useful life (RUL) of rolling bearings. The data sets are clustered by GMM to divide all data sets into several health states adaptively and reasonably. The number of clusters is determined by the minimum description length principle. Thus, either the health state of the data sets or the number of the states is obtained automatically. Meanwhile, the abnormal data sets can be recognized during the clustering process and removed from the training data sets. After obtaining the health states, appropriate features are selected by DET for increasing the classification and prediction accuracy. In the prediction process, each vibration signal is decomposed into several components by empirical mode decomposition. Some common statis- tical parameters of the components are calculated first and then the features are clustered using GMM to divide the data sets into several health states and remove the abnormal data sets. Thereafter, appropriate statistical parameters of the generated components are selected using DET. Finally, least squares support vector machine is utilized to predict the RUL of rolling bearings.Experimental results indicate that the proposed method reliably predicts the RUL of rolling bearings.
基金supported by National Natural Science Foundation of China (No. 61763037)Inner Mongolia Autonomous Region Natural Science Foundation of China(No. 2019LH06007)Science and Technology Plan Project of Inner Mongolia (No. 2019,2020GG028)。
文摘Working conditions of rolling bearings of wind turbine generators are complicated, and their vibration signals often show non-linear and non-stationary characteristics. In order to improve the efficiency of feature extraction of wind turbine rolling bearings and to strengthen the feature information, a new structural element and an adaptive algorithm based on the peak energy are proposed,which are combined with spectral correlation analysis to form a fault diagnosis algorithm for wind turbine rolling bearings. The proposed method firstly addresses the problem of impulsive signal omissions that are prone to occur in the process of fault feature extraction of traditional structural elements and proposes a "W" structural element to capture more characteristic information. Then, the proposed method selects the scale of multi-scale mathematical morphology, aiming at the problem of multi-scale mathematical morphology scale selection and structural element expansion law. An adaptive algorithm based on peak energy is proposed to carry out morphological scale selection and structural element expansion by improving the computing efficiency and enhancing the feature extraction effect.Finally, the proposed method performs spectral correlation analysis in the frequency domain for an unknown signal of the extracted feature and identifies the fault based on the correlation coefficient. The method is verified by numerical examples using experimental rig bearing data and actual wind field acquisition data and compared with traditional triangular and flat structural elements. The experimental results show that the new structural elements can more effectively extract the pulses in the signal and reduce noise interference,and the fault-diagnosis algorithm can accurately identify the fault category and improve the reliability of the results.
文摘Purpose-The purpose of this paper is to provide a fault diagnosis method for rolling bearings.Rolling bearings are widely used in industrial appliances,and their fault diagnosis is of great importance and has drawn more and more attention.Based on the common failure mechanism of failure modes of rolling bearings,this paper proposes a novel compound data classification method based on the discrete wavelet transform and the support vector machine(SVM)and applies it in the fault diagnosis of rolling bearings.Design/methodology/approach-Vibration signal contains large quantity of information of bearing status and this paper uses various types of wavelet base functions to perform discrete wavelet transform of vibration and denoise.Feature vectors are constructed based on several time-domain indices of the denoised signal.SVM is then used to perform classification and fault diagnosis.Then the optimal wavelet base function is determined based on the diagnosis accuracy.Findings-Experiments of fault diagnosis of rolling bearings are carried out and wavelet functions in several wavelet families were tested.The results show that the SVM classifier with the db4 wavelet base function in the db wavelet family has the best fault diagnosis accuracy.Originality/value-This method provides a practical candidate for the fault diagnosis of rolling bearings in the industrial applications.
文摘The theory of failure of rolling contact bearings is based on fluctuating high level loading and material fatigue. This theory is unimodal, considering only the solid components of the bearing, and ignoring the liquid phase, which is the lubricant. Bearing life is rather dispersed, reaching a ratio of 20 between the extreme values. Since this theory was established, several exceptional phenomena were detected that could not be explained by it, such as: 1) Pitting damage beyond the contact path;2) Detrimental effect of a minute quantity of water in the lubricant on bearing life. 25 ppm of water in the lubricant brought about shorter bearing life by over than 30%. The bimodal failure theory considers both solid and liquid bearing components. The damaging process of the lubricant evolves from its cavitation. During this process vapor filled cavities are formed in low pressure zones. When these cavities reach high pressure zones they implode exothermally. These implosions cause local high pressure pulses reaching 30,000 at accompanied by a temperature rise of about 2000 degrees K [<a href="#ref1">1</a>]. This paper includes cavitation erosion test results on stainless steel samples by vibratory and water tunnel test rigs. Various methods of lubricant dehydration are presented and evaluated. The main conclusion from this analysis is the use of water-free lubricants, for long life of RC bearings and more uniform service life thereof.
基金This paper is supported by National Natural Science Fundation of China under Grant No.50405030.
文摘In order to confirm the early failure cause of a four-row cylindrical roller bearing at the backup roll position of a six-high cold sheet mill, its lubrication behavior under harsh operating conditions is investigated. Through establishing and solving the Elastohydrodynamic Lubrication (EHL) model of the roller-inner raceway contact region, the minimum oil film thickness and the real lubrication performance are achieved. The results show the bearing failures come from the poor oil film thickness in the case of high temperature and low rotational speed, which leads to contact wear. So various approaches to improve bearing life via improving lubrication are compared. It has been proved decreasing surface roughness of both contact bodies is an effective way.
基金National Natural Science Foundation ofChina(No.50175068) and the Key Project sup-ported by National Natural Science Foundationof China(No.50335030)
文摘The vibration signals of rolling element bearing are produced by a combination of periodic and random processes due to the machine’s rotation cycle and interaction with the real world. The combination of such components can give rise to signals, which have periodically time-varying ensemble statistical and are best considered as cyclostationary. When the early fault occurs, the background noise is very heavy, it is difficult to disclose the latent periodic components successfully using cyclostationary analysis alone. In this paper the degree of cyclostationarity is combined with wavelet filtering for detection of rolling element bearing early faults. Using the proposed entropy minimization rule. The parameters of the wavelet filter are optimized. This method is shown to be effective in detecting rolling element bearing early fault when cyclostationary analysis by itself fails.
文摘<span><span><span style="font-family:Verdana;">The prevailing cumulative failure curves of Rolling Contact Bearings (RCB) have two main drawbacks: they begin at the origin and have a large dispersion. The purpose of this study is to develop an ideal failure curve and overcome the present drawbacks. The ideal failure curve of RC bearings is obtained by applying a water-free lubricant to the tested bearings. This eliminates the cavitation erosion from the Bimodal failure mechanism and the synergistic effect with the mechanical failure mode</span><span style="font-family:Verdana;">.</span></span></span><span><span><span> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">This</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> new concept considers the fatigue process involved in the failure mechanism and suggests decreasing the dispersion of bearing life.</span></span></span>
基金The authors would like to acknowledge the support of the China Scholarship Council,the Flemish Government under the“Onderzoeksprogramma Artificiële Intelligentie(AI)Vlaanderen”Program and the Research Foundation–Flanders(FWO)under the ROBUSTIFY research grant no.S006119N.
文摘Early fault diagnosis of bearings is crucial for ensuring safe and reliable operations.Convolutional neural networks(CNNs)have achieved significant breakthroughs in machinery fault diagnosis.However,complex and varying working conditions can lead to inter-class similarity and intra-class variability in datasets,making it more challenging for CNNs to learn discriminative features.Furthermore,CNNs are often considered“black boxes”and lack sufficient interpretability in the fault diagnosis field.To address these issues,this paper introduces a residual mixed domain attention CNN method,referred to as RMA-CNN.This method comprises multiple residual mixed domain attention modules(RMAMs),each employing one attention mechanism to emphasize meaningful features in both time and channel domains.This significantly enhances the network’s ability to learn fault-related features.Moreover,we conduct an in-depth analysis of the inherent feature learning mechanism of the attention module RMAM to improve the interpretability of CNNs in fault diagnosis applications.Experiments conducted on two datasets—a high-speed aeronautical bearing dataset and a motor bearing dataset—demonstrate that the RMA-CNN achieves remarkable results in diagnostic tasks.
基金The National Defense Advance Research Program(No.81302XXX)
文摘In order to more accurately predict the contact fatigue life of rolling bearing, a prediction method of fatigue life of rolling bearing is proposed based on elastohydrodynamic lubrication (EHL), the 3-paameter Weibull distribution ad fatigue strength. First,the contact stress considering elliptical EHL is obtained by mapping film pressure onto the Hertz zone. Then,the basic strength model of rolling bearing based on the 3-parameter Weibull distribution is deduced by the series connection reliability theory. Considering the effect of the type of stress, variation of shape and fuctuation of load, the mathematical models of the 尸 -tS-TV curve of the minimum life and the characteristic life for rolling bearing are established, respectively, and thus the prediction model of fatigue life of rolling bearing based on the 3-paameter Weibull distribution and fatigue strength is further deduced. Finally, the contact fatigue life obtained by the proposed method ad the latest international standard (IS0281: 2007) about the fatigue life prediction of rolling bearing are compared with those obtained by the statistical method. Results show that the proposed prediction method is effective and its relative error is smaier than that of the latest international standard (IS0281: 2007) with reliability R 〉 0. 93.
基金This paper is supported by the National Natural Science Foundation of China(Grant No.51875465)the Civil Aircraft Scientific Research Project.The authors would like to thank them.
文摘As the key component in aeroengine rotor systems,the health status of rolling bearings directly influences the reliability and safety of aeroengine rotor systems.In order to monitor rolling bearing conditions,a fusion fault diagnosis method,namely empirical mode decomposition(EMD)-Mahalanobis distance(E2MD)and improved wavelet threshold(IWT)(E2MD-IWT)for vibrational signals and acoustic emission(AE)signals is developed to improve the diagnostic accuracy of rolling bearings.The IWT method is proposed with a hard wavelet threshold and a soft wavelet threshold.Moreover,it is shown to be effective through numerical simulation.EMD is utilized to process the original AE signals for rolling bearings so as to generate a set of components called intrinsic modes functions(IMFs).The Mahalanobis distance(MD)approach is introduced in order to determine the smallest MD between the original AE signal and IMF components.Then,the IWT approach is employed to select the IMF components with the largest MD.It is demonstrated that the proposed E2MD-IWT method for vibrational and AE signals can improve rolling bearing fault diagnosis,beyond its ability to effectively eliminate noise signals.This study offers a promising approach to fault diagnosis for rolling bearings in aeroengines with regard to vibration signals and AE signals.
文摘This paper deals with the test research on noise and fatigue life of the composite rolling bearings which have been developed recently. The test results show that the-composite rolling bearings have remarkable advantages of low noise and great load-bearing capacity over plastic ones.