期刊文献+
共找到1,380篇文章
< 1 2 69 >
每页显示 20 50 100
Hybrid model for BOF oxygen blowing time prediction based on oxygen balance mechanism and deep neural network 被引量:1
1
作者 Xin Shao Qing Liu +3 位作者 Zicheng Xin Jiangshan Zhang Tao Zhou Shaoshuai Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期106-117,共12页
The amount of oxygen blown into the converter is one of the key parameters for the control of the converter blowing process,which directly affects the tap-to-tap time of converter. In this study, a hybrid model based ... The amount of oxygen blown into the converter is one of the key parameters for the control of the converter blowing process,which directly affects the tap-to-tap time of converter. In this study, a hybrid model based on oxygen balance mechanism (OBM) and deep neural network (DNN) was established for predicting oxygen blowing time in converter. A three-step method was utilized in the hybrid model. First, the oxygen consumption volume was predicted by the OBM model and DNN model, respectively. Second, a more accurate oxygen consumption volume was obtained by integrating the OBM model and DNN model. Finally, the converter oxygen blowing time was calculated according to the oxygen consumption volume and the oxygen supply intensity of each heat. The proposed hybrid model was verified using the actual data collected from an integrated steel plant in China, and compared with multiple linear regression model, OBM model, and neural network model including extreme learning machine, back propagation neural network, and DNN. The test results indicate that the hybrid model with a network structure of 3 hidden layer layers, 32-16-8 neurons per hidden layer, and 0.1 learning rate has the best prediction accuracy and stronger generalization ability compared with other models. The predicted hit ratio of oxygen consumption volume within the error±300 m^(3)is 96.67%;determination coefficient (R^(2)) and root mean square error (RMSE) are0.6984 and 150.03 m^(3), respectively. The oxygen blow time prediction hit ratio within the error±0.6 min is 89.50%;R2and RMSE are0.9486 and 0.3592 min, respectively. As a result, the proposed model can effectively predict the oxygen consumption volume and oxygen blowing time in the converter. 展开更多
关键词 basic oxygen furnace oxygen consumption oxygen blowing time oxygen balance mechanism deep neural network hybrid model
下载PDF
Customized Convolutional Neural Network for Accurate Detection of Deep Fake Images in Video Collections 被引量:1
2
作者 Dmitry Gura Bo Dong +1 位作者 Duaa Mehiar Nidal Al Said 《Computers, Materials & Continua》 SCIE EI 2024年第5期1995-2014,共20页
The motivation for this study is that the quality of deep fakes is constantly improving,which leads to the need to develop new methods for their detection.The proposed Customized Convolutional Neural Network method in... The motivation for this study is that the quality of deep fakes is constantly improving,which leads to the need to develop new methods for their detection.The proposed Customized Convolutional Neural Network method involves extracting structured data from video frames using facial landmark detection,which is then used as input to the CNN.The customized Convolutional Neural Network method is the date augmented-based CNN model to generate‘fake data’or‘fake images’.This study was carried out using Python and its libraries.We used 242 films from the dataset gathered by the Deep Fake Detection Challenge,of which 199 were made up and the remaining 53 were real.Ten seconds were allotted for each video.There were 318 videos used in all,199 of which were fake and 119 of which were real.Our proposedmethod achieved a testing accuracy of 91.47%,loss of 0.342,and AUC score of 0.92,outperforming two alternative approaches,CNN and MLP-CNN.Furthermore,our method succeeded in greater accuracy than contemporary models such as XceptionNet,Meso-4,EfficientNet-BO,MesoInception-4,VGG-16,and DST-Net.The novelty of this investigation is the development of a new Convolutional Neural Network(CNN)learning model that can accurately detect deep fake face photos. 展开更多
关键词 deep fake detection video analysis convolutional neural network machine learning video dataset collection facial landmark prediction accuracy models
下载PDF
Model Agnostic Meta-Learning(MAML)-Based Ensemble Model for Accurate Detection of Wheat Diseases Using Vision Transformer and Graph Neural Networks
3
作者 Yasir Maqsood Syed Muhammad Usman +3 位作者 Musaed Alhussein Khursheed Aurangzeb Shehzad Khalid Muhammad Zubair 《Computers, Materials & Continua》 SCIE EI 2024年第5期2795-2811,共17页
Wheat is a critical crop,extensively consumed worldwide,and its production enhancement is essential to meet escalating demand.The presence of diseases like stem rust,leaf rust,yellow rust,and tan spot significantly di... Wheat is a critical crop,extensively consumed worldwide,and its production enhancement is essential to meet escalating demand.The presence of diseases like stem rust,leaf rust,yellow rust,and tan spot significantly diminishes wheat yield,making the early and precise identification of these diseases vital for effective disease management.With advancements in deep learning algorithms,researchers have proposed many methods for the automated detection of disease pathogens;however,accurately detectingmultiple disease pathogens simultaneously remains a challenge.This challenge arises due to the scarcity of RGB images for multiple diseases,class imbalance in existing public datasets,and the difficulty in extracting features that discriminate between multiple classes of disease pathogens.In this research,a novel method is proposed based on Transfer Generative Adversarial Networks for augmenting existing data,thereby overcoming the problems of class imbalance and data scarcity.This study proposes a customized architecture of Vision Transformers(ViT),where the feature vector is obtained by concatenating features extracted from the custom ViT and Graph Neural Networks.This paper also proposes a Model AgnosticMeta Learning(MAML)based ensemble classifier for accurate classification.The proposedmodel,validated on public datasets for wheat disease pathogen classification,achieved a test accuracy of 99.20%and an F1-score of 97.95%.Compared with existing state-of-the-art methods,this proposed model outperforms in terms of accuracy,F1-score,and the number of disease pathogens detection.In future,more diseases can be included for detection along with some other modalities like pests and weed. 展开更多
关键词 Wheat disease detection deep learning vision transformer graph neural network model agnostic meta learning
下载PDF
Review of Artificial Intelligence for Oil and Gas Exploration: Convolutional Neural Network Approaches and the U-Net 3D Model
4
作者 Weiyan Liu 《Open Journal of Geology》 CAS 2024年第4期578-593,共16页
Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Ou... Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Our review traces the evolution of CNN, emphasizing the adaptation and capabilities of the U-Net 3D model in automating seismic fault delineation with unprecedented accuracy. We find: 1) The transition from basic neural networks to sophisticated CNN has enabled remarkable advancements in image recognition, which are directly applicable to analyzing seismic data. The U-Net 3D model, with its innovative architecture, exemplifies this progress by providing a method for detailed and accurate fault detection with reduced manual interpretation bias. 2) The U-Net 3D model has demonstrated its superiority over traditional fault identification methods in several key areas: it has enhanced interpretation accuracy, increased operational efficiency, and reduced the subjectivity of manual methods. 3) Despite these achievements, challenges such as the need for effective data preprocessing, acquisition of high-quality annotated datasets, and achieving model generalization across different geological conditions remain. Future research should therefore focus on developing more complex network architectures and innovative training strategies to refine fault identification performance further. Our findings confirm the transformative potential of deep learning, particularly CNN like the U-Net 3D model, in geosciences, advocating for its broader integration to revolutionize geological exploration and seismic analysis. 展开更多
关键词 deep Learning Convolutional neural networks (CNN) Seismic Fault Identification U-Net 3D model Geological Exploration
下载PDF
Nitrogen Content Inversion of Corn Leaf Data Based on Deep Neural Network Model
5
作者 Yulin Li Mengmeng Zhang +2 位作者 Maofang Gao Xiaoming Xie Wei Li 《Journal of Beijing Institute of Technology》 EI CAS 2023年第5期619-630,共12页
To obtain excellent regression results under the condition of small sample hyperspectral data,a deep neural network with simulated annealing(SA-DNN)is proposed.According to the characteristics of data,the attention me... To obtain excellent regression results under the condition of small sample hyperspectral data,a deep neural network with simulated annealing(SA-DNN)is proposed.According to the characteristics of data,the attention mechanism was applied to make the network pay more attention to effective features,thereby improving the operating efficiency.By introducing an improved activation function,the data correlation was reduced based on increasing the operation rate,and the problem of over-fitting was alleviated.By introducing simulated annealing,the network chose the optimal learning rate by itself,which avoided falling into the local optimum to the greatest extent.To evaluate the performance of the SA-DNN,the coefficient of determination(R^(2)),root mean square error(RMSE),and other metrics were used to evaluate the model.The results show that the performance of the SA-DNN is significantly better than other traditional methods. 展开更多
关键词 precision agriculture deep neural network nitrogen content detection regression model
下载PDF
Model of Aluminium Foil Rolling Force Based on Neural Networks
6
作者 Wang Bangwen Yang Guang +3 位作者 Xu Feng LI Mouwei LIU Shengming WANG Guoping(Mechanical Engineering School, USTB, Beijing 100083, China) 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 1997年第2期50-50,共1页
Based on the principle of BP neural networks, the rolling force model is established after thoroughly analyzing and reprocessing the data of 1 350 mm aluminium foil mill. It states that the difference between the outp... Based on the principle of BP neural networks, the rolling force model is established after thoroughly analyzing and reprocessing the data of 1 350 mm aluminium foil mill. It states that the difference between the output of artificial neural networks rolling force model and the real value is in the order of 3 percent. The model reflects the real feature of process. 展开更多
关键词 neural networks aluminium foil rolling force model
下载PDF
A Model to Predict Rolling Force of Finishing Stands with RBF Neural Networks
7
作者 应宇圣 王景成 陈春召 《Journal of Shanghai Jiaotong university(Science)》 EI 2005年第3期256-259,共4页
In view of intrinsic imperfection of traditional models of rolling force, in ord er to improve the prediction accuracy of rolling force, a new method combining radial basis function(RBF) neural networks with tradition... In view of intrinsic imperfection of traditional models of rolling force, in ord er to improve the prediction accuracy of rolling force, a new method combining radial basis function(RBF) neural networks with traditional models to predict rolling f orce was proposed. The off-line simulation indicates that the predicted results are much more accurate than that with traditional models. 展开更多
关键词 radial basis function(RBF) neural networks prediction of rolling force finishing rolling
下载PDF
Detection of COVID-19 and Pneumonia Using Deep Convolutional Neural Network
8
作者 Md.Saiful Islam Shuvo Jyoti Das +2 位作者 Md.Riajul Alam Khan Sifat Momen Nabeel Mohammed 《Computer Systems Science & Engineering》 SCIE EI 2023年第1期519-534,共16页
COVID-19 has created a panic all around the globe.It is a contagious dis-ease caused by Severe Acute Respiratory Syndrome Coronavirus 2(SARS-CoV-2),originated from Wuhan in December 2019 and spread quickly all over th... COVID-19 has created a panic all around the globe.It is a contagious dis-ease caused by Severe Acute Respiratory Syndrome Coronavirus 2(SARS-CoV-2),originated from Wuhan in December 2019 and spread quickly all over the world.The healthcare sector of the world is facing great challenges tackling COVID cases.One of the problems many have witnessed is the misdiagnosis of COVID-19 cases with that of healthy and pneumonia cases.In this article,we propose a deep Convo-lutional Neural Network(CNN)based approach to detect COVID+(i.e.,patients with COVID-19),pneumonia and normal cases,from the chest X-ray images.COVID-19 detection from chest X-ray is suitable considering all aspects in compar-ison to Reverse Transcription Polymerase Chain Reaction(RT-PCR)and Computed Tomography(CT)scan.Several deep CNN models including VGG16,InceptionV3,DenseNet121,DenseNet201 and InceptionResNetV2 have been adopted in this pro-posed work.They have been trained individually to make particular predictions.Empirical results demonstrate that DenseNet201 provides overall better performance with accuracy,recall,F1-score and precision of 94.75%,96%,95%and 95%respec-tively.After careful comparison with results available in the literature,we have found to develop models with a higher reliability.All the studies were carried out using a publicly available chest X-ray(CXR)image data-set. 展开更多
关键词 COVID-19 convolutional neural network deep learning DenseNet201 model performance
下载PDF
Soft measurement model of ring's dimensions for vertical hot ring rolling process using neural networks optimized by genetic algorithm 被引量:2
9
作者 汪小凯 华林 +3 位作者 汪晓旋 梅雪松 朱乾浩 戴玉同 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第1期17-29,共13页
Vertical hot ring rolling(VHRR) process has the characteristics of nonlinearity,time-variation and being susceptible to disturbance.Furthermore,the ring's growth is quite fast within a short time,and the rolled ri... Vertical hot ring rolling(VHRR) process has the characteristics of nonlinearity,time-variation and being susceptible to disturbance.Furthermore,the ring's growth is quite fast within a short time,and the rolled ring's position is asymmetrical.All of these cause that the ring's dimensions cannot be measured directly.Through analyzing the relationships among the dimensions of ring blanks,the positions of rolls and the ring's inner and outer diameter,the soft measurement model of ring's dimensions is established based on the radial basis function neural network(RBFNN).A mass of data samples are obtained from VHRR finite element(FE) simulations to train and test the soft measurement NN model,and the model's structure parameters are deduced and optimized by genetic algorithm(GA).Finally,the soft measurement system of ring's dimensions is established and validated by the VHRR experiments.The ring's dimensions were measured artificially and calculated by the soft measurement NN model.The results show that the calculation values of GA-RBFNN model are close to the artificial measurement data.In addition,the calculation accuracy of GA-RBFNN model is higher than that of RBFNN model.The research results suggest that the soft measurement NN model has high precision and flexibility.The research can provide practical methods and theoretical guidance for the accurate measurement of VHRR process. 展开更多
关键词 vertical hot ring rolling dimension precision soft measurement model artificial neural network genetic algorithm
下载PDF
Research on the Application of the Radiative Transfer Model Based on Deep Neural Network in One-dimensional Variational Algorithm
10
作者 HE Qiu-rui ZHANG Rui-ling +1 位作者 LI Jiao-yang WANG Zhen-zhan 《Journal of Tropical Meteorology》 SCIE 2022年第3期326-342,共17页
As a typical physical retrieval algorithm for retrieving atmospheric parameters,one-dimensional variational(1 DVAR)algorithm is widely used in various climate and meteorological communities and enjoys an important pos... As a typical physical retrieval algorithm for retrieving atmospheric parameters,one-dimensional variational(1 DVAR)algorithm is widely used in various climate and meteorological communities and enjoys an important position in the field of microwave remote sensing.Among algorithm parameters affecting the performance of the 1 DVAR algorithm,the accuracy of the microwave radiative transfer model for calculating the simulated brightness temperature is the fundamental constraint on the retrieval accuracies of the 1 DVAR algorithm for retrieving atmospheric parameters.In this study,a deep neural network(DNN)is used to describe the nonlinear relationship between atmospheric parameters and satellite-based microwave radiometer observations,and a DNN-based radiative transfer model is developed and applied to the 1 DVAR algorithm to carry out retrieval experiments of the atmospheric temperature and humidity profiles.The retrieval results of the temperature and humidity profiles from the Microwave Humidity and Temperature Sounder(MWHTS)onboard the Feng-Yun-3(FY-3)satellite show that the DNN-based radiative transfer model can obtain higher accuracy for simulating MWHTS observations than that of the operational radiative transfer model RTTOV,and also enables the 1 DVAR algorithm to obtain higher retrieval accuracies of the temperature and humidity profiles.In this study,the DNN-based radiative transfer model applied to the 1 DVAR algorithm can fundamentally improve the retrieval accuracies of atmospheric parameters,which may provide important reference for various applied studies in atmospheric sciences. 展开更多
关键词 one-dimensional variational algorithm radiative transfer model deep neural network FY-3 MWHTS temperature and humidity profiles
下载PDF
Deep Neural Network Based Behavioral Model of Nonlinear Circuits
11
作者 Zhe Jin Sekouba Kaba 《Journal of Applied Mathematics and Physics》 2021年第3期403-412,共10页
With the rapid growth of complexity and functionality of modern electronic systems, creating precise behavioral models of nonlinear circuits has become an attractive topic. Deep neural networks (DNNs) have been recogn... With the rapid growth of complexity and functionality of modern electronic systems, creating precise behavioral models of nonlinear circuits has become an attractive topic. Deep neural networks (DNNs) have been recognized as a powerful tool for nonlinear system modeling. To characterize the behavior of nonlinear circuits, a DNN based modeling approach is proposed in this paper. The procedure is illustrated by modeling a power amplifier (PA), which is a typical nonlinear circuit in electronic systems. The PA model is constructed based on a feedforward neural network with three hidden layers, and then Multisim circuit simulator is applied to generating the raw training data. Training and validation are carried out in Tensorflow deep learning framework. Compared with the commonly used polynomial model, the proposed DNN model exhibits a faster convergence rate and improves the mean squared error by 13 dB. The results demonstrate that the proposed DNN model can accurately depict the input-output characteristics of nonlinear circuits in both training and validation data sets. 展开更多
关键词 Nonlinear Circuits deep neural networks Behavioral model Power Amplifier
下载PDF
The enlightenment of artificial intelligence large-scale model on the research of intelligent eye diagnosis in traditional Chinese medicine
12
作者 GAO Yuan WU Zixuan +4 位作者 SHENG Boyang ZHANG Fu CHENG Yong YAN Junfeng PENG Qinghua 《Digital Chinese Medicine》 CAS CSCD 2024年第2期101-107,共7页
Eye diagnosis is a method for inspecting systemic diseases and syndromes by observing the eyes.With the development of intelligent diagnosis in traditional Chinese medicine(TCM);artificial intelligence(AI)can improve ... Eye diagnosis is a method for inspecting systemic diseases and syndromes by observing the eyes.With the development of intelligent diagnosis in traditional Chinese medicine(TCM);artificial intelligence(AI)can improve the accuracy and efficiency of eye diagnosis.However;the research on intelligent eye diagnosis still faces many challenges;including the lack of standardized and precisely labeled data;multi-modal information analysis;and artificial in-telligence models for syndrome differentiation.The widespread application of AI models in medicine provides new insights and opportunities for the research of eye diagnosis intelli-gence.This study elaborates on the three key technologies of AI models in the intelligent ap-plication of TCM eye diagnosis;and explores the implications for the research of eye diagno-sis intelligence.First;a database concerning eye diagnosis was established based on self-su-pervised learning so as to solve the issues related to the lack of standardized and precisely la-beled data.Next;the cross-modal understanding and generation of deep neural network models to address the problem of lacking multi-modal information analysis.Last;the build-ing of data-driven models for eye diagnosis to tackle the issue of the absence of syndrome dif-ferentiation models.In summary;research on intelligent eye diagnosis has great potential to be applied the surge of AI model applications. 展开更多
关键词 Traditional Chinese medicine(TCM) Eye diagnosis Artificial intelligence(AI) Large-scale model Self-supervised learning deep neural network
下载PDF
Vulnerability Detection of Ethereum Smart Contract Based on SolBERT-BiGRU-Attention Hybrid Neural Model
13
作者 Guangxia Xu Lei Liu Jingnan Dong 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第10期903-922,共20页
In recent years,with the great success of pre-trained language models,the pre-trained BERT model has been gradually applied to the field of source code understanding.However,the time cost of training a language model ... In recent years,with the great success of pre-trained language models,the pre-trained BERT model has been gradually applied to the field of source code understanding.However,the time cost of training a language model from zero is very high,and how to transfer the pre-trained language model to the field of smart contract vulnerability detection is a hot research direction at present.In this paper,we propose a hybrid model to detect common vulnerabilities in smart contracts based on a lightweight pre-trained languagemodel BERT and connected to a bidirectional gate recurrent unitmodel.The downstream neural network adopts the bidirectional gate recurrent unit neural network model with a hierarchical attention mechanism to mine more semantic features contained in the source code of smart contracts by using their characteristics.Our experiments show that our proposed hybrid neural network model SolBERT-BiGRU-Attention is fitted by a large number of data samples with smart contract vulnerabilities,and it is found that compared with the existing methods,the accuracy of our model can reach 93.85%,and the Micro-F1 Score is 94.02%. 展开更多
关键词 Smart contract pre-trained language model deep learning recurrent neural network blockchain security
下载PDF
MENDED GENETIC BP NETWORK AND APPLICATION TO ROLLING FORCE PREDICTION OF 4-STAND TANDEM COLD STRIP MILL 被引量:3
14
作者 ZhangDazhi SunYikang +1 位作者 WangYanping CaiHengjun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2004年第2期297-300,共4页
In order to make good use of the ability to approach any function of BP (backpropagation) network and overcome its local astringency, and also make good use of the overallsearch ability of GA (genetic algorithms), a p... In order to make good use of the ability to approach any function of BP (backpropagation) network and overcome its local astringency, and also make good use of the overallsearch ability of GA (genetic algorithms), a proposal to regulate the network's weights using bothGA and BP algorithms is suggested. An integrated network system of MGA (mended genetic algorithms)and BP algorithms has been established. The MGA-BP network's functions consist of optimizing GAperformance parameters, the network's structural parameters, performance parameters, and regulatingthe network's weights using both GA and BP algorithms. Rolling forces of 4-stand tandem cold stripmill are predicted by the MGA-BP network, and good results are obtained. 展开更多
关键词 Genetic algorithms BP algorithms neural network Tandem cold strip mill rolling force prediction
下载PDF
Decentralized adaptive neural network sliding mode position/force control of constrained reconfigurable manipulators 被引量:2
15
作者 李元春 丁贵彬 赵博 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第11期2917-2925,共9页
A decentralized adaptive neural network sliding mode position/force control scheme is proposed for constrained reconfigurable manipulators. Different from the decentralized control strategy in multi-manipulator cooper... A decentralized adaptive neural network sliding mode position/force control scheme is proposed for constrained reconfigurable manipulators. Different from the decentralized control strategy in multi-manipulator cooperation, the proposed decentralized position/force control scheme can be applied to series constrained reconfigurable manipulators. By multiplying each row of Jacobian matrix in the dynamics by contact force vector, the converted joint torque is obtained. Furthermore, using desired information of other joints instead of their actual values, the dynamics can be represented as a set of interconnected subsystems by model decomposition technique. An adaptive neural network controller is introduced to approximate the unknown dynamics of subsystem. The interconnection and the whole error term are removed by employing an adaptive sliding mode term. And then, the Lyapunov stability theory guarantees the stability of the closed-loop system. Finally, two reconfigurable manipulators with different configurations are employed to show the effectiveness of the proposed decentralized position/force control scheme. 展开更多
关键词 constrained reconfigurable manipulators position/force control model decomposition decentralized control neural network
下载PDF
An Image Classification Method Based on Deep Neural Network with Energy Model 被引量:2
16
作者 Yang Yang Jinbao Duan +2 位作者 Haitao Yu Zhipeng Gao Xuesong Qiu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2018年第12期555-575,共21页
The development of deep learning has revolutionized image recognition technology.How to design faster and more accurate image classification algorithms has become our research interests.In this paper,we propose a new ... The development of deep learning has revolutionized image recognition technology.How to design faster and more accurate image classification algorithms has become our research interests.In this paper,we propose a new algorithm called stochastic depth networks with deep energy model(SADIE),and the model improves stochastic depth neural network with deep energy model to provide attributes of images and analysis their characteristics.First,the Bernoulli distribution probability is used to select the current layer of the neural network to prevent gradient dispersion during training.Then in the backpropagation process,the energy function is designed to optimize the target loss function of the neural network.We also explored the possibility of using Adam and SGD combination optimization in deep neural networks.Finally,we use training data to train our network based on deep energy model and testing data to verify the performance of the model.The results we finally obtained in this research include the Classified labels of images.The impacts of our obtained results show that our model has high accuracy and performance. 展开更多
关键词 IMAGE classification deep energy model deep neural network STOCHASTIC DEPTH deep learning.
下载PDF
Deep Neural Network with Strip Pooling for Image Classification of Yarn-Dyed Plaid Fabrics 被引量:1
17
作者 Xiaoting Zhang Weidong Gao Ruru Pan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第3期1533-1546,共14页
Historically,yarn-dyed plaid fabrics(YDPFs)have enjoyed enduring popularity with many rich plaid patterns,but production data are still classified and searched only according to production parameters.The process does ... Historically,yarn-dyed plaid fabrics(YDPFs)have enjoyed enduring popularity with many rich plaid patterns,but production data are still classified and searched only according to production parameters.The process does not satisfy the visual needs of sample order production,fabric design,and stock management.This study produced an image dataset for YDPFs,collected from 10,661 fabric samples.The authors believe that the dataset will have significant utility in further research into YDPFs.Convolutional neural networks,such as VGG,ResNet,and DenseNet,with different hyperparameter groups,seemed themost promising tools for the study.This paper reports on the authors’exhaustive evaluation of the YDPF dataset.With an overall accuracy of 88.78%,CNNs proved to be effective in YDPF image classification.This was true even for the low accuracy of Windowpane fabrics,which often mistakenly includes the Prince ofWales pattern.Image classification of traditional patterns is also improved by utilizing the strip pooling model to extract local detail features and horizontal and vertical directions.The strip pooling model characterizes the horizontal and vertical crisscross patterns of YDPFs with considerable success.The proposed method using the strip pooling model(SPM)improves the classification performance on the YDPF dataset by 2.64%for ResNet18,by 3.66%for VGG16,and by 3.54%for DenseNet121.The results reveal that the SPM significantly improves YDPF classification accuracy and reduces the error rate of Windowpane patterns as well. 展开更多
关键词 Yarn-dyed plaid fabric image classification image dataset deep neural network strip pooling model
下载PDF
Synthetical Control of AGC/LPC System Based on Neural Networks Internal Model Control
18
作者 Hu He, Xiaodong Luan, Yikang Sun Information Engineering School, University of Science and Technology Beijing, Beijing 100083, China 《Journal of University of Science and Technology Beijing》 CSCD 2001年第1期75-77,共3页
One synthetical control method of AGC/LPC system based on intelligence control theory-neural networks internal model control method is presented. Genetic algorithm (GA) is applied to optimize the parameters of the neu... One synthetical control method of AGC/LPC system based on intelligence control theory-neural networks internal model control method is presented. Genetic algorithm (GA) is applied to optimize the parameters of the neural networks. Simulation results prove that this method is effective. 展开更多
关键词 hot strip rolling AGC LOOPER neural networks internal model control GA
下载PDF
A Self-Learning Data-Driven Development of Failure Criteria of Unknown Anisotropic Ductile Materials with Deep Learning Neural Network
19
作者 Kyungsuk Jang Gun Jin Yun 《Computers, Materials & Continua》 SCIE EI 2021年第2期1091-1120,共30页
This paper first proposes a new self-learning data-driven methodology that can develop the failure criteria of unknown anisotropic ductile materials from the minimal number of experimental tests.Establishing failure c... This paper first proposes a new self-learning data-driven methodology that can develop the failure criteria of unknown anisotropic ductile materials from the minimal number of experimental tests.Establishing failure criteria of anisotropic ductile materials requires time-consuming tests and manual data evaluation.The proposed method can overcome such practical challenges.The methodology is formalized by combining four ideas:1)The deep learning neural network(DLNN)-based material constitutive model,2)Self-learning inverse finite element(SELIFE)simulation,3)Algorithmic identification of failure points from the selflearned stress-strain curves and 4)Derivation of the failure criteria through symbolic regression of the genetic programming.Stress update and the algorithmic tangent operator were formulated in terms of DLNN parameters for nonlinear finite element analysis.Then,the SELIFE simulation algorithm gradually makes the DLNN model learn highly complex multi-axial stress and strain relationships,being guided by the experimental boundary measurements.Following the failure point identification,a self-learning data-driven failure criteria are eventually developed with the help of a reliable symbolic regression algorithm.The methodology and the self-learning data-driven failure criteria were verified by comparing with a reference failure criteria and simulating with different materials orientations,respectively. 展开更多
关键词 Data-driven modeling deep learning neural networks genetic programming anisotropic failure criterion
下载PDF
Finite element model simulation and back propagation neural network modeling of void closure for an extra-thick plate during gradient temperature rolling
20
作者 Shun-hu Zhang Wen-hao Tian +4 位作者 Li-zhi Che Wei-jian Chen Yan Li Liang-wei Wan Zi-qi Yin 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2024年第9期2236-2247,共12页
The void closure behavior in a central extra-thick plate during the gradient temperature rolling was simulated and a back propagation(BP)neural network model was established.The thermal–mechanical finite element mode... The void closure behavior in a central extra-thick plate during the gradient temperature rolling was simulated and a back propagation(BP)neural network model was established.The thermal–mechanical finite element model of the gradient temperature rolling process was first developed and validated.The prediction error of the model for the rolling force is less than 2.51%,which has provided the feasibility of imbedding a defect in it.Based on the relevant data obtained from the simulation,the BP neural network was used to establish a prediction model for the compression degree of a void defect.After statistical analysis,80%of the data had a hit rate higher than 95%,and the hit rate of all data was higher than 90%,which indicates that the BP neural network can accurately predict the compression degree.Meanwhile,the comparisons between the results with the gradient temperature rolling and uniform temperature rolling,and between the results with the single-pass rolling and multi-pass rolling were discussed,which provides a theoretical reference for developing process parameters in actual production. 展开更多
关键词 BP neural network Finite element model Gradient temperature rolling Void defect Extra-thick plate
原文传递
上一页 1 2 69 下一页 到第
使用帮助 返回顶部