期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A new cable truss support system for coal roadways affected by dynamic pressure 被引量:7
1
作者 Hong Yan Fulian He 《International Journal of Mining Science and Technology》 SCIE EI 2012年第5期613-617,共5页
The support of coal roadways is seriously affected by intense dynamic pressures.This can lead to problems with large deformation of the roof and the two side walls of coal roadways.Rapid convergence of the walls and r... The support of coal roadways is seriously affected by intense dynamic pressures.This can lead to problems with large deformation of the roof and the two side walls of coal roadways.Rapid convergence of the walls and roof,a high damage rate to the bolts and cables,or even abrupt roof collapse or rib spalling can occur during the service period of these coal roadways.Analyzing the main support measures used in China leads to a proposed new cable truss supporting system.Thorough study of the entire structure shows the superiority of this design for roadways suffering under dynamic pressure.A corresponding mechanical model of the rock surrounding the cable truss system is described in this paper and formulas for calculating pre-tightening forces of the truss cable,and the minimum anchoring forces,were deduced.The new support system was applied to a typical roadway affected by intensive dynamic pressure that is located in the Xinyuan Coal Mine.The results show that the largest subsidence of the roof was 97 mm,the convergence of the two sides was less than 248 mm,and the average depth of the loose,fractured layer was only 6.12 mm.This proves that the new support system is feasible and effective. 展开更多
关键词 Dynamic pressure roof collapse Cable truss Pre-tightening force
下载PDF
Analysis and control on anomaly water inrush in roof of fully-mechanized mining field 被引量:3
2
作者 Peng Linjun Yang Xiaojie Sun Xiaoming 《Mining Science and Technology》 EI CAS 2011年第1期89-92,共4页
Caving of mine roofs from water inrush due to anomalous pressure is one of the major disasters and accidents that can occur in mines during production.Roof water inrush can trigger a wide range of roof collapse,causin... Caving of mine roofs from water inrush due to anomalous pressure is one of the major disasters and accidents that can occur in mines during production.Roof water inrush can trigger a wide range of roof collapse,causing major accidents from breaking roof supports while caving.These failures flood wells and do a great deal of damage to mines and endanger mine safety.Our objective is to analyze the anomalies of water inrush crushing the support at the #6301 working face in the Jisan Coal Mine of the Yanzhou Mining Group.Through information of water inrush to the roof,damage caused by tectonic movements,information on the damage caused by roof collapse and the theory about the distribution of pressure in mine abutments,we advice adjusting the length of the working face and the position of open-off cut relatively to the rich water area.In the case of anomalous roof pressure we should develop a state equation to estimate preventive measures with"transferring rock beam"theory.Simultaneously, we improve the capacity of drainage equipment and ensured adequate water retention at the storehouse. These are all major technologies to ensure the control and prevention against accidents caused by anomalous water inrush in roofs,thus ensuring safety in the production process of a coal mine. 展开更多
关键词 roof Water inrush pressure Anomaly Analysis Control
下载PDF
Comparative Analysis of the Distribution Characteristics of Floor Stress Field between Gob-Side Entry Retaining with Roof Cutting and Conventional Mining
3
作者 Weifeng Xue Chaoyang Liu +3 位作者 Chao Li Yongguang Chen Xiaoping Xi Feng Wang 《Journal of Geoscience and Environment Protection》 2022年第12期17-28,共12页
All coal fields in North China are affected by floor confined water to varying degrees, floor failure and water inrush risk have always been a major problem to baffle coal mining activities. Roof cutting and pressure ... All coal fields in North China are affected by floor confined water to varying degrees, floor failure and water inrush risk have always been a major problem to baffle coal mining activities. Roof cutting and pressure relief and the lack of protective coal pillar can cause the change of floor stress field, leading to the change of the floor failure depth, stress field of floor is the key to determine the depth of floor failure. In order to deeply study the distribution characteristics of floor stress field in gob-side entry retaining mining with roof cutting, taking the 50107 and 50109 working faces of Dongdong Coal Mine in Chenghe as the research objects, the numerical simulation software is used to simulate the floor stress field distribution of gob-side entry retaining mining with roof cutting and conventional mining. The distribution characteristics of the floor stress field of the working face are compared and analyzed under the three modes of conventional mining of reserved coal pillar, the first mining face of gob-side entry retaining with roof cutting and gob-side entry retaining with roof cutting. The results show that the peak stress concentration in front of the working face all occurs at 10 m under the three mining modes. The stress concentration area in front of conventional working face of reserved coal pillar is mainly in the middle of the working face. The stress concentration area in front of the first working face of gob-side entry retaining with roof cutting (50107) is located in the middle of the working face and the side of the working face of the retaining roadway. The stress concentration area of the working face (50109) is mainly in the middle and the two ends of the working face. The order of the peak value of the maximum concentrated stress in front of the working face is conventional working face of reserved coal pillar > the first working face of gob-side entry retaining with roof cutting (50107) > working face of gob-side entry retaining with roof cutting (50109). There is a stress reduction zone behind the working face, but there is a stress concentration phenomenon extending to the outside of the roadway, and the stress distribution is obviously different. Conventional working face of reserved coal pillar and the first working face of gob-side retaining with roof cutting (50107) show a double peak form of stress concentration on the outside of the two ends of the roadway, and the peak value of the concentrated stress at the rear of the working face is in the following order: On the side close to the transportation roadway, conventional working face of reserved coal pillar = the first working face of gob-side entry retaining with roof cutting (50107) > working face of gob-side entry retaining with roof cutting (50109);on the side close to the return airway, conventional working face of reserved coal pillar > the first working face of gob-side entry retaining with roof cutting (50107) > working face of gob-side entry retaining with roof cutting (50109). 展开更多
关键词 roof Cutting and pressure Relief Gob-Side Entry Retaining Floor Stress Field Stress Concentration
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部