期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Domino instability effect of surrounding rock-coal pillars in a room-and-pillar gob 被引量:7
1
作者 Li Chong Xu Jinhai +1 位作者 Wang Zhongliang Qin Shuai 《International Journal of Mining Science and Technology》 SCIE EI 2013年第6期913-918,共6页
To discuss the domino instability effect and large area roof falling and roof accidents of surrounding rockcoal pillars in a room-and-pillar gob,the equilibrium equation for a roof-coal pillar-floor system with the in... To discuss the domino instability effect and large area roof falling and roof accidents of surrounding rockcoal pillars in a room-and-pillar gob,the equilibrium equation for a roof-coal pillar-floor system with the influence of mining floor was developed based on the engineering conditions of the surrounding rock in a room-and-pillar gob in the 3^(-2)coal seam of Tanggonggou mine.The conditions of system instability and the relationship between system stability and system stiffness were analyzed from an energetic point of view.Numerical simulation using the discrete element software UDEC was also carried out to simulate conditions causing the domino effect on surrounding rock-coal pillars in a 3^(-2)room-and-pillar gob.The results show that:if we want the system to destabilize,the collective energy in roof-and-floor must be larger than that in the coal pillar.When the stiffness of the coal pillars and the roof-and-floor are both greater than zero,the system is stable.When the stiffness of the coal pillars is negative but the summed stiffness of the coal pillars and roof-and-floor is larger than or equal to zero,the system is statically destroyed.When the sum of the coal pillars and the roof-floor stiffness is negative,the system suffers from severe damages.For equal advance distances of the coal mining face,the wider coal pillars can reduce the probability of domino type instability.Conversely,the smaller width pillars can increase the instability probability.Domino type instability of surrounding rock-coal pillars is predicted to be unlikely when the width of coal pillars is not less than 8 m. 展开更多
关键词 Domino effect Surrounding rock room-and-pillar Gob
下载PDF
Preventing roof fall fatalities during pillar recovery:A ground control success story 被引量:4
2
作者 Mark Christopher Gauna Michael 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第1期107-113,共7页
For decades, pillar recovery accounted for a quarter of all roof fall fatalities in underground coal mines.Studies showed that a miner on a pillar recovery section was at least three times more likely to be killed by ... For decades, pillar recovery accounted for a quarter of all roof fall fatalities in underground coal mines.Studies showed that a miner on a pillar recovery section was at least three times more likely to be killed by a roof fall than other coal miners. Since 2007, however, there has been just one fatal roof fall on a pillar line. This paper describes the process that resulted in this historic achievement. It covers both the key research findings and the ways in which those insights, beginning in the early 2000 s, were implemented in mining practice. One key finding was that safe pillar recovery requires both global and local stability.Global stability is addressed primarily through proper pillar design, and became a major focus after the2007 Crandall Canyon mine disaster. But the most significant improvements resulted from detailed studies that showed that local stability, defined as roof control in the immediate work area, could be achieved with three interventions:(1) leaving an engineered final stump, rather than extracting the entire pillar,(2) enhancing roof bolt support, particularly in intersections, and(3) increasing the use of mobile roof supports(MRS). A final component was an emphasis on better management of pillar recovery operations.This included a focus on worker positioning, as well as on the pillar and lift sequences, MRS operations,and hazard identification. As retreat mines have incorporated these elements into their roof control plans,it has become clear that pillar recovery is not ‘‘inherently unsafe." The paper concludes with a discussion of the challenges that remain, including the problems of rib falls and coal bursts. 展开更多
关键词 Retreat mining Roof support room-and-pillar Ground control
下载PDF
Subsidence over room and pillar retreat mining in a low coal seam 被引量:4
3
作者 Andre Zingano Anderson Weiss 《International Journal of Mining Science and Technology》 EI CSCD 2019年第1期51-57,共7页
The objective of this paper is to study the behavior of a low thick and low depth coal seam and the overburden rock mass. The mining method is room and pillar in retreat and partial pillar recovery. The excavation met... The objective of this paper is to study the behavior of a low thick and low depth coal seam and the overburden rock mass. The mining method is room and pillar in retreat and partial pillar recovery. The excavation method is conventional drill and blast because of the small production. The partial pillar recovery is about 30% of the previous pillar size, 7 m × 7 m. The roof displacement was monitored during retreat operation; the surface movement was also monitored. The effect of the blasting vibration on the final pillar strength had been considered. Due to blasting, the pillar reduced about 20%. The consequence is more pillar deformation and roof vertical displacement. The pillar retreat and ground movement were simulated in a three-dimensional numerical model. This model was created to predict the surface subsidence and compare to the subsidence measured. This study showed that the remaining pillar and low seam reduce the subsidence that was predicted with conventional methods. 展开更多
关键词 SUBSIDENCE room-and-pillar MINING RETREAT MINING Coal
下载PDF
Protecting miners from coal bursts during development above historic mine workings in Harlan County,KY 被引量:1
4
作者 Christopher Mark 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第1期111-116,共6页
In order to reach a large,untapped reserve of high-quality coal,D8 Cloverlick Mine proposed to mine a corridor nearly 600 m deep beneath the Benham Spur of Black Mountain,Kentucky’s highest peak.D8 Cloverlick Mine wa... In order to reach a large,untapped reserve of high-quality coal,D8 Cloverlick Mine proposed to mine a corridor nearly 600 m deep beneath the Benham Spur of Black Mountain,Kentucky’s highest peak.D8 Cloverlick Mine was extracting the Owl seam,but the corridor’s route lay approximately 20 m above century-old mine workings in the C–(Darby)seam.Adding to the concern,three serious coal bursts had recently occurred in nearby Owl seam workings.Maps of the old workings seemed to indicate that the underlying C–seam had been fully extracted.However,two of the coal bursts had occurred above areas where the C–Seam was also shown as mined out.Mine Safety and Health Administration(MSHA)Technical Support therefore investigated the records of past mining to better understand the old mine maps.Underground conditions observed in current Owl seam workings were also compared with the maps of the old C–seam workings.The study concluded that the presence of hazardous underlying remnants could not be ruled out.To mitigate the burst risk,D8 Cloverlick Mine adopted a strategy of stress probe drilling.A self-propelled coal drill was used to auger 11.5-m-long,small diameter holes in advance of mining.As each hole was drilled,the cuttings were measured to detect the presence of highly stressed coal.Ultimately the crossing was successfully completed without incident. 展开更多
关键词 Coal bursts Underground mining room-and-pillar DESTRESSING
下载PDF
Geotechnical considerations for concurrent pillar recovery in close-distance multiple seams
5
作者 Peter Zhang Berk Tulu +1 位作者 Morgan Sears Jack Trackemas 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2018年第1期21-27,共7页
Room-and-pillar mining with pillar recovery has historically been associated with more than 25% of all ground fall fatalities in underground coal mines in the United States.The risk of ground falls during pillar recov... Room-and-pillar mining with pillar recovery has historically been associated with more than 25% of all ground fall fatalities in underground coal mines in the United States.The risk of ground falls during pillar recovery increases in multiple-seam mining conditions.The hazards associated with pillar recovery in multiple-seam mining include roof cutters, roof falls, rib rolls, coal outbursts, and floor heave.When pillar recovery is planned in multiple seams, it is critical to properly design the mining sequence and panel layout to minimize potential seam interaction.This paper addresses geotechnical considerations for concurrent pillar recovery in two coal seams with 21 m of interburden under about 305 m of depth of cover.The study finds that, for interburden thickness of 21 m, the multiple-seam mining influence zone in the lower seam is directly under the barrier pillar within about 30 m from the gob edge of the upper seam.The peak stress in the interburden transfers down at an angle of approximately 20°away from the gob, and the entries and crosscuts in the influence zone are subjected to elevated stress during development and retreat.The study also suggests that, for full pillar recovery in close-distance multiple-seam scenarios,it is optimal to superimpose the gobs in both seams, but it is not necessary to superimpose the pillars.If the entries and/or crosscuts in the lower seam are developed outside the gob line of the upper seam,additional roof and rib support needs to be considered to account for the elevated stress in the multiple-seam influence zone. 展开更多
关键词 PILLAR recovery room-and-pillar RETREAT MINING MULTIPLE SEAM MINING sequence PILLAR design
下载PDF
The current perspective of the PA 1957 gas well pillar study and its implications for longwall gas well pillars
6
作者 Peter Zhang Daniel Su Chris Mark 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第1期117-126,共10页
Many states rely upon the Pennsylvania 1957 Gas Well Pillar Study to evaluate the coal barrier surrounding gas wells.The study included 77 gas well failure cases that occurred in the Pittsburgh and Freeport coal seams... Many states rely upon the Pennsylvania 1957 Gas Well Pillar Study to evaluate the coal barrier surrounding gas wells.The study included 77 gas well failure cases that occurred in the Pittsburgh and Freeport coal seams over a 25-year span.At the time,coal was mined using the room-and-pillar mining method with full or partial pillar recovery,and square or rectangle pillars surrounding the gas wells were left to protect the wells.The study provided guidelines for pillar sizes under different overburden depths up to 213 m(700 ft).The 1957 study has also been used to determine gas well pillar sizes in longwall mines since longwall mining began in the 1970 s.The original study was developed for room-and-pillar mining and could be applied to gas wells in longwall chain pillars under shallow cover.However,under deep cover,severe deformations in gas wells have occurred in longwall chain pillars.Presently,with a better understanding of coal pillar mechanics,new insight into subsidence movements induced by retreat mining,and advances in numerical modeling,it has become both critically important and feasible to evaluate the adequacy of the 1957 study for longwall gas well pillars.In this paper,the data from the 1957 study is analyzed from a new perspective by considering various factors,including overburden depth,failure location,failure time,pillar safety factor(SF),and floor pressure.The pillar SF and floor pressure are calculated by considering abutment pressure induced by full pillar recovery.A statistical analysis is performed to find correlations between various factors and helps identify the most significant factors for the stability of gas wells influenced by retreat mining.Through analyzing the data from the 1957 study,the guidelines for gas well pillars in the 1957 study are evaluated for their adequacy for roomand-pillar mining and their applicability to longwall mining.Numerical modeling is used to model the stability of gas wells by quantifying the mining-induced stresses in gas well casings.Results of this study indicate that the guidelines in the 1957 study may be appropriate for pillars protecting conventional gas wells in both room-and-pillar mining and longwall mining under overburden depths up to 213m(700 ft),but may not be sufficient for protective pillars under deep cover.The current evaluation of the 1957 study provides not only insights about potential gas well failures caused by retreat mining but also implications for what critical considerations should be taken into account to protect gas wells in longwall mining. 展开更多
关键词 Gas well pillar Pennsylvania 1957 gas well pillar study room-and-pillar mining Longwall mining
下载PDF
Integrating the effect of abutments in estimating the average vertical stress of elastic hard rock pillars by combining numerical modelling and artificial neural networks
7
作者 Nevaid Dzimunya Yoshiaki Fujii Youhei Kawamura 《Underground Space》 SCIE EI CSCD 2023年第6期121-135,共15页
Estimating average vertical pillar stresses is a critical step in designing room-and-pillar mines.Several analytical methods can be used to estimate the vertical stresses acting on the pillars.However,the present anal... Estimating average vertical pillar stresses is a critical step in designing room-and-pillar mines.Several analytical methods can be used to estimate the vertical stresses acting on the pillars.However,the present analytical methods fail to adequately account for the influence of abutments on the distribution of vertical stresses,especially when applied to narrow panel widths and pillar layouts comprising evenly spaced barriers.In this study,a multi-layer perceptron neural network(MLPNN)was applied to predict the vertical loads of regular pillars more accurately.Hundreds of room-and-pillar mine layouts were modeled using a displacement discontinuity method(DDM),and a database of 2355 sampled pillar cases was compiled.The MLPNN was trained based on this database,and its prediction capabilities were further validated using simulations by a finite difference code(i.e.,FLAC3D).The model predictions and the FLAC3D simulations reasonably agreed with a regression coefficient of 0.99.The model was also adapted for mine cases with evenly spaced barrier pillars,and its application to a real case study mine has shown to provide accurate pillar stress estimations;hence,this model is suitable for practical use at mines.Even though the MLPNN model cannot be applied universally to all mine situations,it seems as a significant improvement over existing analytical techniques in terms of accounting for the influence of abutments on pillar stresses. 展开更多
关键词 Pillar stress ABUTMENTS Multi-layer perceptron neural network Numerical simulation room-and-pillar mine
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部