期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Lateral root elongation in maize is related to auxin synthesis and transportation mediated by N metabolism under a mixed NO_(3)^(–) and NH_(4)^(+) supply
1
作者 Peng Wang Lan Yang +4 位作者 Xichao Sun Wenjun Shi Rui Dong Yuanhua Wu Guohua Mi 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第3期1048-1060,共13页
A mixed nitrate (NO_(3)^(–)) and ammonium (NH_(4)^(+)) supply can promote root growth in maize (Zea mays),however,the changes in root morphology and the related physiological mechanism under different N forms are sti... A mixed nitrate (NO_(3)^(–)) and ammonium (NH_(4)^(+)) supply can promote root growth in maize (Zea mays),however,the changes in root morphology and the related physiological mechanism under different N forms are still unclear.Here,maize seedlings were grown hydroponically with three N supplied in three different forms (NO_(3)^(–)only,75/25 NO_(3)^(–)/NH_(4)^(+)and NH_(4)^(+)only).Compared with sole NO_(3)^(–)or NH_(4)^(+),the mixed N supply increased the total root length of maize but did not affect the number of axial roots.The main reason was the increased total lateral root length,while the average lateral root (LR) length in each axle was only slightly increased.In addition,the average LR density of 2nd whorl crown root under mixed N was also increased.Compared with sole nitrate,mixed N could improve the N metabolism of roots (such as the N influx rate,nitrate reductase (NR) and glutamine synthase (GS)enzyme activities and total amino content of the roots).Experiments with exogenously added NR and GS inhibitors suggested that the increase in the average LR length under mixed N was related to the process of N assimilation,and whether the NR mediated NO synthesis participates in this process needs further exploration.Meanwhile,an investigation of the changes in root-shoot ratio and carbon (C) concentration showed that C transportation from shoots to roots may not be the key factor in mediating lateral root elongation,and the changes in the sugar concentration in roots further proved this conclusion.Furthermore,the synthesis and transportation of auxin in axial roots may play a key role in lateral root elongation,in which the expression of ZmPIN1B and ZmPIN9 may be involved in this pathway.This study preliminarily clarified the changes in root morphology and explored the possible physiological mechanism under a mixed N supply in maize,which may provide some theoretical basis for the cultivation of crop varieties with high N efficiency. 展开更多
关键词 MAIZE NO_(3)^(–)/NH_(4)^(+)ratio lateral root elongation N assimilation indole-3-acetic acid
下载PDF
The Cotton GhWRKY91 Gene Negatively Regulates Root Elongation in Overexpressed Transgenic Arabidopsis thaliana
2
作者 Yueying Liu Yuqing Wang Lijiao Gu 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第11期2937-2946,共10页
WRKY transcription factors play important roles in plant growth,development,and stress responses.Our previous research has shown that the GhWRKY91 gene can delay age-,abscisic acid(ABA)-,and drought-induced leaf senes... WRKY transcription factors play important roles in plant growth,development,and stress responses.Our previous research has shown that the GhWRKY91 gene can delay age-,abscisic acid(ABA)-,and drought-induced leaf senescence when overexpressed in transgenic Arabidopsis plants.To explore in more depth the biological functions of the GhWRKY91 gene,we further observed the root growth of overexpressing transgenic Arabidopsis thaliana under ABA and drought treatment.In this study,we transplanted the germinated seeds of wild-type(WT)and three transgenic lines(OE-12,OE-13 and OE-20)to 1/2 MS solid medium containing ABA and different concentrations of mannitol(simulated drought treatment)for culturing.The results showed that the transgenic plants had dark green leaves and short root lengths when no stress treatment was added.After ABA and mannitol treatment,the root growth of the WT and transgenic Arabidopsis was inhibited to varying degrees,and the root length downregulation of the transgenic plants was higher than that of the WT,indicating that they were more sensitive to ABA and drought.A bimolecular fluorescence complementation(BiFC)assay showed that the GhWRKY91 and GhWRKY3 proteins interact and emit yellow fluorescence in tobacco leaf cells.These results indicate that the GhWRKY91 gene negatively regulates root elongation in transgenic Arabidopsis and provide a basis for further research on the molecular mechanism of its involvement in regulating cotton root development. 展开更多
关键词 COTTON GhWRKY91 gene root elongation stress treatment BIFC
下载PDF
OsABA8ox2, an ABA catabolic gene, suppresses root elongation of rice seedlings and contributes to drought response 被引量:3
3
作者 Yan Zhang Xiaoping Wang +6 位作者 Yanzhong Luo Lan Zhang Yuan Yao Lu Han Zhenhua Chen Lei Wang Yubin Li 《The Crop Journal》 SCIE CAS CSCD 2020年第3期480-491,共12页
In rice, OsABA8ox encodes abscisic acid(ABA) 8′-hydroxylase, which catalyzes the committed step of ABA catabolism. The contribution of ABA catabolism in root development remains unclear. We investigated the role of O... In rice, OsABA8ox encodes abscisic acid(ABA) 8′-hydroxylase, which catalyzes the committed step of ABA catabolism. The contribution of ABA catabolism in root development remains unclear. We investigated the role of OsABA8ox2 in root growth and development and drought response. GUS staining results showed that OsABA8ox2 was expressed mainly in roots at seedling stage and was strongly expressed in the meristematic zone of the radicle. OsABA8ox2 expression in roots was markedly decreased after 0.5 h polyethylene glycol(PEG) treatment and increased after 0.5 h rehydration, implying that OsABA8ox2 is a drought-responsive gene.OsABA8ox2 knockout mediated by the CRISPR-Cas9 system increased drought-induced ABA and indole-3-acetic acid accumulation in roots, conferred increased ABA sensitivity, and promoted a more vertically oriented root system architecture(RSA) beneficial to drought tolerance.OsABA8ox2 overexpression suppressed root elongation and increased stomatal conductance and transpiration rate. Consequently, OsABA8ox2 knockout dramatically improved rice drought tolerance, whereas OsABA8ox2 overexpression seedlings were hypersensitive to drought stress,suggesting that OsABA8ox2 contributes to drought response in rice. Compared with wild type,functional leaves of OsABA8ox2 knockout seedlings showed higher ABA levels, whereas overexpression lines showed lower ABA levels, suggesting that OsABA8ox2, as an ABA catabolic gene, modulates ABA concentration through ABA catabolism. OsABA8ox2 and OsABA8ox3 were both localized in the endoplasmic reticulum. Together, these results indicate that OsABA8ox2 suppresses root elongation of rice seedlings, increases water transpiration, and contributes to drought response through ABA catabolism, and that OsABA8ox2 knockout dramatically improves rice drought tolerance. They highlight the key role of ABA catabolism mediated by OsABA8ox2 on root growth and development. OsABA8ox2, as a novel RSA gene, would be a potential genetic target for the improvement of rice drought tolerance. 展开更多
关键词 ABA suppresses root elongation of rice seedlings and contributes to drought response OsABA8ox2 an ABA catabolic gene
下载PDF
HY5 regulates light-responsive transcription of microRNA163 to promote primary root elongation in Arabidopsis seedlings 被引量:4
4
作者 Tao Li Hongmei Lian +2 位作者 Haojie Li Yufang Xu Huiyong Zhang 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2021年第8期1437-1450,共14页
MicroRNAs(miRNAs)play key roles in the post-transcriptional regulation of gene expression in plants.Many miRNAs are responsive to environmental signals.Light is the first environmental signal perceived by plants after... MicroRNAs(miRNAs)play key roles in the post-transcriptional regulation of gene expression in plants.Many miRNAs are responsive to environmental signals.Light is the first environmental signal perceived by plants after emergence from the soil.However,less is known about the roles and regulatory mechanism of miRNAs in response to light signal.Here,using small RNA sequencing,we determined that miR163 is significantly rapidly induced by light signaling in Arabidopsis thaliana seedlings.The light-inducible response of miR163 functions genetically downstream of LONG HYPOCOTYL 5(HY5),a central positive regulator of photomorphogenesis.HY5 directly binds to the two G/C-hybrid elements in the miR163 promoter with unequal affinity;one of these elements,which is located next to the transcription start site,plays a major role in light-induced expression of miR163.Overexpression of miR163 rescued the defective primary root elongation of hy5 seedlings without affecting lateral root growth,whereas overexpressing of miR163 target PXMT1 inhibited primary root elongation.These findings provide insight into understanding the post-transcriptional regulation of root photomorphogenesis mediated by the HY5-miR163-PXMT1 network. 展开更多
关键词 ARABIDOPSIS HY5 light-responsive expression miR163 primary root elongation
原文传递
Ethylene-induced microtubule reorientation is essential for fast inhibition of root elongation in Arabidopsis 被引量:4
5
作者 Yichuan Wang Yusi Ji +1 位作者 Ying Fu Hongwei Guo 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2018年第9期864-877,共14页
Microtubule reorientation is a long-standing observation that has been implicated in regulating the inhibitory effect of ethylene on axial elongation of plant cells. However, the signaling mechanism underlying ethylen... Microtubule reorientation is a long-standing observation that has been implicated in regulating the inhibitory effect of ethylene on axial elongation of plant cells. However, the signaling mechanism underlying ethylene-induced microtubule reorientation has re- mained elusive. Here, we reveal, by live confocal imaging and kinetic root elongation assays, that the time courses of ethylene-induced microtubule reorientation and root elongation inhibition are highly correlated, and that microtubule reorientation is required for the full responsiveness of root elongation to ethylene treatment. Our genetic analysis demonstrated that the effect of ethylene on microtubule orientation and root elongation is mainly transduced through the canonical linear ethylene signaling pathway. By using pharmacological and genetic analyses, we demonstrate further that the TIR1/AFBs-Aux/IAAs-ARFs auxin signaling pathway, but not the ABP1-ROP6-RlC1 auxin signaling branch, is essential for ethylene-induced microtubule reorientation and root elongation inhibition. Together, these findings offer evidence for the functional significance and elucidate the signaling mechanism for ethylene-induced microtubule reorientation in fast root elongation inhibition in Arabidopsis. 展开更多
关键词 MBD GFP Ethylene-induced microtubule reorientation is essential for fast inhibition of root elongation in Arabidopsis
原文传递
Cell Production and Expansion in the Primary Root of Maize in Response to Low-Nitrogen Stress 被引量:5
6
作者 GAO Kun CHEN Fan-jun +1 位作者 YUAN Li-xing MI Guo-hua 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第11期2508-2517,共10页
Maize plants respond to low-nitrogen stress by enhancing root elongation. The underlying physiological mechanism remains unknown. Seedlings of maize (Zea mays L., cv. Zhengdan 958) were grown in hydroponics with the... Maize plants respond to low-nitrogen stress by enhancing root elongation. The underlying physiological mechanism remains unknown. Seedlings of maize (Zea mays L., cv. Zhengdan 958) were grown in hydroponics with the control (4 mmol L-1) or low-nitrogen (40 μmol L-1) for 12 d, supplied as nitrate. Low nitrogen enhanced root elongation rate by 4.1-fold, accompanied by increases in cell production rate by 2.2-fold, maximal elemental elongation rate (by 2.5-fold), the length of elongation zone (by 1.5-fold), and ifnal cell length by 1.8-fold. On low nitrogen, the higher cell production rate resulted from a higher cell division rate and in fact the number of dividing cells was reduced. Consequently, the residence time of a cell in the division zone tended to be shorter under low nitrogen. In addition, low nitrogen increased root diameter, an increase that occurred speciifcally in the cortex and was accompanied by an increase in cell number. It is concluded that roots elongates in response to low-nitrogen stress by accelerating cell production and expansion. 展开更多
关键词 cell length elemental expansion kinematic analysis root diameter root elongation Zea mays L
下载PDF
The inf luence of soil drying- and tillage-induced penetration resistance on maize root growth in a clayey soil
7
作者 LIN Li-rong HE Yang-bo CHEN Jia-zhou 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第5期1112-1120,共9页
Soil drying may induce a number of stresses on crops. This paper investigated maize(Zea mays L.) root growth as affected by drought and soil penetration resistance(PR), which was caused by soil drying and tillage ... Soil drying may induce a number of stresses on crops. This paper investigated maize(Zea mays L.) root growth as affected by drought and soil penetration resistance(PR), which was caused by soil drying and tillage in a clayey red soil. Compared with conventional tillage(C) and deep tillage(D), soil compaction(P) and no-till(N) significantly increased soil PR in the 0-15 cm layer. The PR increased dramatically as the soil drying increased, particularly in soil with a high bulk density. Increased soil PR reduced the maize root mass density distribution not only in the vertical profile(0-20 cm) but also in the horizontal layer at the same distance(0-5, 5-10, 10-15 cm) from the maize plant. With an increase in soil PR in pots, the maize root length, root surface area and root volume significantly decreased. Specifically, the maize root length declined exponentially from 309 to 64 cm per plant with an increase in soil PR from 491 to 3 370 k Pa; the roots almost stopped elongating when the soil PR was larger than 2 200 k Pa. It appeared that fine roots(〈2.5 mm in diameter) thickened when the soil PR increased, resulting in a larger average root diameter. The average root diameter increased linearly with soil PR, regardless of soil irrigation or drought. The results suggest that differences in soil PR caused by soil drying is most likely responsible for inconsistent root responses to water stress in different soils. 展开更多
关键词 clayey soil root diameter root elongation soil compaction water stress
下载PDF
Effect of Inoculation with Three Phytohormone Producers Phytobacteria with ACC Deaminase Activity on Root Length of Lens esculenta Seedlings
8
作者 Natalia Elenes Zazueta Orlando Ortega Acosta +4 位作者 Laura Martínez Herrera Raúl Alcalde Vázquez Eugenia López López Angelica Guerrero Zúniga Angelica Rodríguez Dorantes 《American Journal of Plant Sciences》 2013年第11期2199-2205,共7页
Plant-associated bacteria that inhabit the rhizosphere may influence the plant growth by their contribution to the endogenous pool of phytohormones and by the activity of ACC deaminase to decrease the ethylene concent... Plant-associated bacteria that inhabit the rhizosphere may influence the plant growth by their contribution to the endogenous pool of phytohormones and by the activity of ACC deaminase to decrease the ethylene concentration. The aim of this study was to analyse the root length growth by the promoting effect of indole acetic acid producers phytobacteria with ACC deaminase activity, on inoculated seeds of Lens esculenta as synergistic effect on root elongation. In this study, although the roots of L. esculenta seedlings do not show a significant promotion, these phytobacteria could be recommended to treat plants analyzing their added inoculum to increase plant biomass and retard the effect of ethylene on cultures supplied with Tryptophan and ACC. 展开更多
关键词 Plant Growth-Promoting Bacteria Lens esculenta root elongation Test Indole Acetic Acid ACC Deaminase Activity
下载PDF
Responses of Sesbania rostrata and S. cannabina to Pb, Zn, Cu and Cd toxi-cities 被引量:6
9
作者 YANGZhong-yi CHENFu-hua +2 位作者 YUANJian-gang ZHENGZheng-wei WONGMing-hung 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2004年第4期670-673,共4页
Responses of Sesbania rostrata and S. cannabina to Pb, Zn, Cu and Cd toxicities were assessed by a seed-suspending seedbed(SSS) approach. The results showed that the SSS approach was suitable for testing the tolerance... Responses of Sesbania rostrata and S. cannabina to Pb, Zn, Cu and Cd toxicities were assessed by a seed-suspending seedbed(SSS) approach. The results showed that the SSS approach was suitable for testing the tolerance of a plant to the stress of toxic metals. The endpoints include seed germination success, straightened radicle and hypocotyl of the seedlings from the seeds. The measurements could be done easily and accurately. It was found that the elongation of radicle was the most sensitive indicator to the stress of heavy metals among the endpoints. When exposure to lower or medium concentrations of Pb, Zn, and Cd, the development of the lateral roots were favorable. Species of S. rostrata was more tolerant than S. cannabina to the heavy metals, especially to Zn and Cd. The ED 50 of Pb, Zn, Cu and Cd were 32.90, 5.32, 4.40 and 12.00 μg/ml for S. rostrata, respectively, and they were 30.11, 2.87, 4.05 and 4.94 μg/ml respectively for S. cannabina. 展开更多
关键词 Sesbania rostrata Sesbania cannabina heavy metal tolerance testing method root elongation Pb/Zn tailings
下载PDF
PDX1.1-dependent biosynthesis of vitamin B6 protects roots from ammonium-induced oxidative stress 被引量:3
10
作者 Ying Liu Rodolfo A.Maniero +5 位作者 Ricardo F.H.Giehl Michael Melzer Priscille Steensma Gabriel Krouk Teresa B.Fitzpatrick Nicolaus von Wirén 《Molecular Plant》 SCIE CAS CSCD 2022年第5期820-839,共20页
Despite serving as a major inorganic nitrogen source for plants,ammonium causes toxicity at elevated con-centrations,inhibiting root elongation early on.While previous studies have shown that ammonium-inhibited root d... Despite serving as a major inorganic nitrogen source for plants,ammonium causes toxicity at elevated con-centrations,inhibiting root elongation early on.While previous studies have shown that ammonium-inhibited root development relates to ammonium uptake and formation of reactive oxygen species(ROS)in roots,it remains unclear about the mechanisms underlying the repression of root growth and how plants cope with this inhibitory effect of ammonium.In this study,we demonstrate that ammonium-induced apo-plastic acidification co-localizes with Fe precipitation and hydrogen peroxide(H_(2)O_(2))accumulation along the stele of the elongation and differentiation zone in root tips,indicating Fe-dependent ROS formation.By screening ammonium sensitivity in T-DNA insertion lines of ammonium-responsive genes,we identified PDX1.1,which is upregulated by ammonium in the root stele and whose product catalyzes de novo biosyn-thesis of vitamin B6.Root growth of pdx1.1 mutants is hypersensitive to ammonium,while chemical complementation or overexpression of PDX1.1 restores root elongation.This salvage strategy requires non-phosphorylated forms of vitamin B6 that are able to quench ROS and rescue root growth from ammo-nium inhibition.Collectively,these results suggest that PDX1.1-mediated synthesis of non-phosphorylated B6 vitamers acts as a primary strategy to protect roots from ammonium-dependent ROS formation. 展开更多
关键词 ammonium nutrition apoplastic pH Fe mobilization root elongation PYRIDOXINE ROS scavenging
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部