期刊文献+
共找到21篇文章
< 1 2 >
每页显示 20 50 100
Effects of soil moisture on cotton root length density and yield under drip irrigation with plastic mulch in Aksu Oasis farmland 被引量:10
1
作者 Yilihamu Yimamu 《Journal of Arid Land》 SCIE 2010年第4期243-249,共7页
Effects of soil moisture on cotton root length density (total root length per unit soil volume) and yield under drip irrigation with plastic mulch were studied through field experiments. The results indicate that spat... Effects of soil moisture on cotton root length density (total root length per unit soil volume) and yield under drip irrigation with plastic mulch were studied through field experiments. The results indicate that spatial distributions of root length density of cotton under various water treatments were basically similar. Horizontally, both root length densities of cotton in wide and narrow rows were similar, and higher than that between mulches. Vertically, root length density of cotton decreased with increasing soil depth. The distribution of root length density is different under different irrigation treatments. In conditions of over-irrigation, the root length density of cotton between mulches would increase. However, it would decrease in both the wide rows and narrow rows. The mean root length density of cotton increased with increasing irrigation water. Water stress caused the root length density to increase in lower soil layers. There is a significant correlation between root length density and yields of cotton at the flower-boll and wadding stages. The regression between irrigation amount and yield of cotton can be expressed as y = -0.0026x2+18.015x-24845 (R2 = 0.959). It showed that the irrigation volume of 3,464.4 m3/hm2 led to op-timal root length density. The yield of cotton was 6,360 .8 kg/hm2 under that amount of irrigation. 展开更多
关键词 drip irrigation under plastic mulch soil moisture COTTON root length density
下载PDF
Root length density distribution and associated soil water dynamics for tomato plants under furrow irrigation in a solar greenhouse 被引量:3
2
作者 QIU Rangjian DU Taisheng KANG Shaozhong 《Journal of Arid Land》 SCIE CSCD 2017年第5期637-650,共14页
Furrow irrigation is a traditional widely-used irrigation method in the world. Understanding the dynamics of soil water distribution is essential to developing effective furrow irrigation strategies, especially in wat... Furrow irrigation is a traditional widely-used irrigation method in the world. Understanding the dynamics of soil water distribution is essential to developing effective furrow irrigation strategies, especially in water-limited regions. The objectives of this study are to analyze root length density distribution and to explore soil water dynamics by simulating soil water content using a HYDRUS-2D model with consideration of root water uptake for furrow irrigated tomato plants in a solar greenhouse in Northwest China. Soil water contents were also in-situ observed by the ECH_2O sensors from 4 June to 19 June and from 21 June to 4 July, 2012. Results showed that the root length density of tomato plants was concentrated in the 0–50 cm soil layers, and radiated 0–18 cm toward the furrow and 0–30 cm along the bed axis. Soil water content values simulated by the HYDRUS-2D model agreed well with those observed by the ECH_2O sensors, with regression coefficient of 0.988, coefficient of determination of 0.89, and index of agreement of 0.97. The HYDRUS-2D model with the calibrated parameters was then applied to explore the optimal irrigation scheduling. Infrequent irrigation with a large amount of water for each irrigation event could result in 10%–18% of the irrigation water losses. Thus we recommend high irrigation frequency with a low amount of water for each irrigation event in greenhouses for arid region. The maximum high irrigation amount and the suitable irrigation interval required to avoid plant water stress and drainage water were 34 mm and 6 days, respectively, for given daily average transpiration rate of 4.0 mm/d. To sum up, the HYDRUS-2D model with consideration of root water uptake can be used to improve irrigation scheduling for furrow irrigated tomato plants in greenhouses in arid regions. 展开更多
关键词 root length density distribution HYDRUS-2D model soil water content irrigation scheduling greenhouse
下载PDF
Characterization of alpine meadow surface crack and its correlation with root-soil properties
3
作者 WU Yuechen ZHU Haili +5 位作者 ZHANG Yu ZHANG Hailong LIU Guosong LIU Yabin LI Guorong HU Xiasong 《Journal of Arid Land》 SCIE CSCD 2024年第6期834-851,共18页
Quantifying surface cracks in alpine meadows is a prerequisite and a key aspect in the study of grassland crack development.Crack characterization indices are crucial for the quantitative characterization of complex c... Quantifying surface cracks in alpine meadows is a prerequisite and a key aspect in the study of grassland crack development.Crack characterization indices are crucial for the quantitative characterization of complex cracks,serving as vital factors in assessing the degree of cracking and the development morphology.So far,research on evaluating the degree of grassland degradation through crack characterization indices is rare,especially the quantitative analysis of the development of surface cracks in alpine meadows is relatively scarce.Therefore,based on the phenomenon of surface cracking during the degradation of alpine meadows in some regions of the Qinghai-Tibet Plateau,we selected the alpine meadow in the Huangcheng Mongolian Township,Menyuan Hui Autonomous County,Qinghai Province,China as the study area,used unmanned aerial vehicle(UAV)sensing technology to acquire low-altitude images of alpine meadow surface cracks at different degrees of degradation(light,medium,and heavy degradation),and analyzed the representative metrics characterizing the degree of crack development by interpreting the crack length,length density,branch angle,and burrow(rat hole)distribution density and combining them with in situ crack width and depth measurements.Finally,the correlations between the crack characterization indices and the soil and root parameters of sample plots at different degrees of degradation in the study area were analyzed using the grey relation analysis.The results revealed that with the increase of degradation,the physical and chemical properties of soil and the mechanical properties of root-soil composite changed significantly,the vegetation coverage reduced,and the root system aggregated in the surface layer of alpine meadow.As the degree of degradation increased,the fracture morphology developed from"linear"to"dendritic",and eventually to a complex and irregular"polygonal"pattern.The crack length,width,depth,and length density were identified as the crack characterization indices via analysis of variance.The results of grey relation analysis also revealed that the crack length,width,depth,and length density were all highly correlated with root length density,and as the degradation of alpine meadows intensified,the underground biomass increased dramatically,forming a dense layer of grass felt,which has a significant impact on the formation and expansion of cracks. 展开更多
关键词 alpine meadow grassland degradation grassland cracks crack characterization index crack morphology root length density grey relation analysis
下载PDF
Root Growth of the Annual Tillering Grass Panicum miliaceum in Heterogeneous Nutrient Environments 被引量:2
4
作者 何维明 董鸣 《Acta Botanica Sinica》 CSCD 2001年第8期846-851,共6页
To study growth responses of the roots of Panicum miliaceum L. to heterogeneous supply of nutrients. The authors analyzed the effects of the nutrient levels in both original patches (O) and destination patches (D) on ... To study growth responses of the roots of Panicum miliaceum L. to heterogeneous supply of nutrients. The authors analyzed the effects of the nutrient levels in both original patches (O) and destination patches (D) on the root growth of P. miliaceum when its roots were allowed to extend from original patch into destination patch. When the nutrient levels in the original patches were low, coarse root biomass ratio (coarse root biomass in the D/total coarse root biomass), coarse root length ratio (coarse root length in the D/total coarse root length), coarse root surface area ratio (coarse root surface area in the D/total coarse root surface area) and fine root length ratio (fine root length in the D/total fine root length) were greater in the destination patches with lower nutrient levels than in the destination patches with higher nutrient levels, while fine root length, fine root length density, fine root surface index, and fine root surface area density were smaller in the former than in the latter. When the nutrient levels in the original patches were high, fine root length, fine root length density, fine root surface area index and fine root surface density were greater in the destination patches with lower nutrient levels than in the destination patches with higher nutrient levels, coarse roots did not respond to the nutrient levels in the destination patches significantly. When the roots extended from the original patches with the same nutrient level into the destination patches with contrasting nutrient levels, fine root biomass and its percentage allocation did not respond to the nutrient levels in the destination patches significantly, whereas both root length and root surface area did. This indicates that the fine roots of P. miliaceum responded to difference in nutrient supply by plasticity in their length and surface area, rather than in their root biomass. 展开更多
关键词 Panicum miliaceum nutrient patch root biomass root length root surface area root density
下载PDF
Effect of Root Architecture on Structural Stability and Erodibility of Topsoils during Concentrated Flow in Hilly Loess Plateau 被引量:13
5
作者 LI Qiang LIU Guobin +2 位作者 ZHANG Zheng TUO Dengfeng XU Mingxiang 《Chinese Geographical Science》 SCIE CSCD 2015年第6期757-764,共8页
Traditional vegetation techniques for the control of concentrated flow erosion are widely recognized, whereas only a few studies have experimentally investigated the impacts of belowground roots on the erodibility of ... Traditional vegetation techniques for the control of concentrated flow erosion are widely recognized, whereas only a few studies have experimentally investigated the impacts of belowground roots on the erodibility of topsoils in semi-arid areas. To quantify the effects of root architectures on soil erodibility and its relevant structural properties, simulated flow experiments were conducted at six-week intervals from 18 July to 20 October in 2012 in the hilly Loess Plateau. Five treatments were: 1) bare(control), 2) purple alfalfa(Medicago sativa), representing tap roots(T), 3) switchgrass(Panicum virgatum), representing fibrous roots(F), 4) purple alfalfa and switchgrass, representing both tap and fibrous roots(T + F), and 5) natural recovery(N). For each treatment, soil structural properties and root characteristics were measured at an interval of six weeks. Soil anti-scouribility was calculated. Results showed that grass planting slightly reduced soil bulk density, but increased soil aggregate content by 19.1%, 10.6%, 28.5%, and 41.2% in the treatments T, F, T + F, and N, respectively. Soil shear strength(cohesion and angle of internal friction(φ)) significantly increased after the grass was planted. As roots grew, soil cohesion increased by 115.2%–135.5%, while soil disintegration rate decreased by 39.0%–58.1% in the 21 th week compared with the recorded value in the 9th week. Meanwhile, root density and root surface area density increased by 64.0%–104.7% and 75.9%–157.1%, respectively. No significant differences in soil anti-scouribility were observed between the treatments of T and F or of T + F and N, but the treatments of T + F and N performed more effectively than T or F treatment alone in retarding concentrated flow. Soil aggregation and root surface-area density explained the observed soil anti-scouribility during concentrated flow well for the different treatments. This result proved that the restoration of natural vegetation might be the most appropriate strategy in soil reinforcement in the hilly Loess Plateau. 展开更多
关键词 fibrous roots tap roots root density soil structural properties soil anti-scouribility hilly Loess Plateau China
下载PDF
Effects of plant roots on soil preferential pathways and soil matrix in forest ecosystems 被引量:7
6
作者 Yinghu Zhang Jianzhi Niu +2 位作者 Weili Zhu Xiaoqing Du Jiao Li 《Journal of Forestry Research》 SCIE CAS CSCD 2015年第2期397-404,共8页
To characterize effects of plant roots on preferential flow(PF),we measured root length density(RLD)and root biomass(RB) in Jiufeng National Forest Park,Beijing,China.Comparisons were made for RLD and RB between... To characterize effects of plant roots on preferential flow(PF),we measured root length density(RLD)and root biomass(RB) in Jiufeng National Forest Park,Beijing,China.Comparisons were made for RLD and RB between soil preferential pathways and soil matrices.RLD and RB declined with the increasing soil depth(0–10,10–20,20–30,30–40,40–50,50–60 cm) in all experimental plots.RLD was greater in soil preferential pathways than in the surrounding soil matrix and was 69.5,75.0 and72.2 % for plant roots of diameter(d) /1,1 / d / 3 and3 / d / 5 mm,respectively.Fine root systems had the most pivotal influence on soil preferential flow in this forest ecosystem.In all experimental plots,RB content was the sum of RB from soil preferential pathways and the soil matrix in each soil depth.With respect to 6 soil depth gradient(0–10,10–20,20–30,30–40,40–50,50–60 cm) in each plot,the number of soil depth gradient that RB content was greater in soil preferential pathways than in the soil matrix was characterized,and the proportion was68.2 % in all plots. 展开更多
关键词 Preferential flow Preferential pathways Soil matrix root length density root biomass
下载PDF
Maize-legume intercropping promote N uptake through changing the root spatial distribution,legume nodulation capacity,and soil N availability 被引量:7
7
作者 ZHENG Ben-chuan ZHOU Ying +9 位作者 CHEN Ping ZHANG Xiao-na DU Qing YANG Huan WANG Xiao-chun YANG Feng XIAO Te LI Long YANG Wen-yu YONG Tai-wen 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2022年第6期1755-1771,共17页
Legume cultivars affect N uptake,component crop growth,and soil physical and chemical characteristics in maize-legume intercropping systems.However,how belowground interactions mediate root growth,N fixation,and nodul... Legume cultivars affect N uptake,component crop growth,and soil physical and chemical characteristics in maize-legume intercropping systems.However,how belowground interactions mediate root growth,N fixation,and nodulation of different legumes to affect N uptake is still unclear.Hence,a two-year experiment was conducted with five planting patterns,i.e.,maize-soybean strip intercropping(IMS),maize-peanut strip intercropping(IMP),and corresponding monocultures(monoculture maize(MM),monoculture soybean(MS),and monoculture peanut(MP)),and two N application rates,i.e.,no N fertilizer(N-)and conventional N fertilizer(N+),to examine relationships between N uptake and root distribution of crops,legume nodulation and soil N availability.Results showed that the averaged N uptake per unit area of intercrops was significantly lower than the corresponding monocultures.Compared with the monoculture system,the N uptake of the intercropping systems increased by 31.7-45.4%in IMS and by 7.4-12.2%in IMP,respectively.The N uptake per plant of intercropped maize and soybean significantly increased by 61.6 and 31.8%,and that of intercropped peanuts significantly decreased by 46.6%compared with the corresponding monocultures.Maize and soybean showed asymmetrical distribution of roots in strip intercropping systems.The root length density(RLD)and root surface area density(RSAD)of intercropped maize and soybean were significantly greater than that of the corresponding monocultures.The roots of intercropped peanuts were confined,which resulted in decreased RLD and RSAD compared with the monoculture.The nodule number and nodule fresh weight of soybean were significantly greater in IMS than in MS,and those of peanut were significantly lower in IMP than in MP.The soil protease,urease,and nitrate reductase activities of maize and soybean were significantly greater in IMS and IMP than in the corresponding monoculture,while the enzyme activities of peanut were significantly lower in IMP than in MP.The soil available N of maize and soybean was significantly greater increased in IMS and IMP than in the corresponding monocultures,while that of IMP was significantly lower than in MP.In summary,the IMS system was more beneficial to N uptake than the IMP system.The intercropping of maize and legumes can promote the N uptake of maize,thus reducing the need for N application and improving agricultural sustainability. 展开更多
关键词 maize-legume strip intercropping nitrogen uptake soil enzyme activity soil available nitrogen root length density
下载PDF
Soil nutrients in relation to vertical roots distribution in the riparian zone of Three Gorges Reservoir,China 被引量:3
8
作者 ZHONG Rong-hua HU Jin-ming +2 位作者 BAO Yu-hai Wang Fei HE Xiu-bin 《Journal of Mountain Science》 SCIE CSCD 2018年第7期1498-1509,共12页
Since the impoundment of the Three Gorges Reservoir(TGR), the riparian zone has been subjected to numerous environmental changes. This study was conducted to recognize the distribution of grass roots and its impacts o... Since the impoundment of the Three Gorges Reservoir(TGR), the riparian zone has been subjected to numerous environmental changes. This study was conducted to recognize the distribution of grass roots and its impacts on soil nutrients in the water level fluctuation zone of TGR. Roots of four predominant herbaceous plants in the study area, specifically, Cynodon dactylon, Hemarthria altissima, Hemarthria compressa, and Paspalum paspaloides, and their corresponding relation with soil nutrient contents were investigated. Root surface area density was determined with Win RHIZO, and the relationships of root distribution with soil depths and soil nutrient contents were studied. The results indicates that most roots are distributed in the top soil layer of 0-10 cm. Estimated root surface area density for the selected grass species ranges from 0.16 to 13.44 cm^2/cm^3, and decreases exponentially with an increase in soil depth. Soil organic matter and total nitrogen contents are significantly lower on bare control area than the corresponding values on the grasslands. Total nutrient contents on grasslands of C. dactylon and H. compressa are higher than those of other grass areas. Root length density and root surface area density are significantly correlated with soil organic matter and total nitrogen content for the four grasslands. The present results suggests that plant roots have significant effects on the distribution of soil nutrients in soil profiles in the riparian zone along the TGR. Nevertheless, additional investigations are needed to reveal the specific interactions between plant roots distribution, soil nutrients and water level fluctuations. 展开更多
关键词 roots distribution Soil nutrients Water level fluctuations Riparian zone root surface area density root length density
下载PDF
Effects of the Dicranopteris linearis root system and initial moisture content on the soil disintegration characteristics of gully erosion 被引量:2
9
作者 HE Ling DENG Yu-Song +3 位作者 TANG Qiu-yue LIAO Da-lan WANG Chao DUAN Xiao-qian 《Journal of Mountain Science》 SCIE CSCD 2022年第12期3548-3567,共20页
Benggang erosion is caused by a special type of gully erosion in southern China that seriously endangers the local ecology and environment.In this study,typical Benggang collapsing-wall soils were used as the study ar... Benggang erosion is caused by a special type of gully erosion in southern China that seriously endangers the local ecology and environment.In this study,typical Benggang collapsing-wall soils were used as the study area to investigate the effects of different initial moisture contents and dicranopteris linearis root weight densities,as well as their interactions on disintegration in orthogonal test method.The results showed that the rate of soil disintegration decreased as a linear function of the initial moisture content.The soil disintegration rate tended to rise and then fall as the root weight density increased,reflecting an optimum root weight density of 0.75-1.00 g/100 cm3.The incorporation of dicranopteris linearis roots was most effective for soil consolidation in the shallow layers of soil.In addition,the disintegration rate of the collapsing-wall soils increases as the soil layer deepened.The dicranopteris linearis root system and initial moisture content had an interactive effect that was more pronounced in deeper soils.However,the combined effect of these processes was always dominated by the initial moisture content.Moderate initial soil moisture content(0.20-0.24 g/g)and the addition of a high root density in dicranopteris linearis(0.75-1.00 g/100 cm3)were the optimal combinations that reduced the disintegration rate.In conclusion,maintaining a suitable natural moisture content in collapsing-wall soils and taking measures that use plants to consolidate soil can effectively prevent and control the occurrence of Benggang erosion.The results of this study provided further insight into the factors that influence soil disintegration and offered a scientific basis for soil erosion management in the southern China. 展开更多
关键词 Collapsing wall Initial moisture content Interactive effect root weight density Soil disintegration
下载PDF
Genotype and Planting Density Effects on Rooting Traits and Yield in Cotton (Gossypium hirsutum L,) 被引量:5
10
作者 Li-Zhen Zhang Bao-Guo Li +3 位作者 Gen-Tu Yan Wopke van der Werf JHJ Spiertz Si-Ping Zhang 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2006年第11期1287-1293,共7页
Root density distribution of plants is a major Indicator of competition between plants and determines resource capture from the solh This experiment was conducted in 2005 at Anyang, located in the Yellow River region,... Root density distribution of plants is a major Indicator of competition between plants and determines resource capture from the solh This experiment was conducted in 2005 at Anyang, located in the Yellow River region, Henan Province, China. Three cotton (Gossyplum hlrsutum L.) cultivars were chosen: hybrid Btcultlvar CRI46, conventional Btcultlvars CRI44 and CRI45. Six planting densities were designed, ranging from 1.5 to 12.0 plants/m^2. Root parameters such as surface area, diameter and length were analyzed by using the DT-SCAN Image analysis method. The root length density (RLD), root average diameter and root area Index (RAI), root surface area per unit land area, were studied. The results showed that RLD and RAI differed between genotypes; hybrid CRI46 had significantly higher (P 〈0.05) RLD and RAI values than conventlonal cultlvars, especially under low planting densities, less than 3.0 plants/m^2. The root area index (RAI) of hybrid CRI46 was 61% higher than of CRI44 and CRI45 at the flowering stage. The RLD and RAI were also significantly different (P = 0.000) between planting densities. The depth distribution of RAI showed that at Increasing planting densities RAI was Increasingly distributed in the soil layers below 50 cm. The RAI of hybrid CRI46 was for all planting densities, obviously higher than other cultivars during the flowering and boll stages. It was concluded that the hybrid had a strong advantage in root maintenance preventing premature senescence of roots. The root diameter of hybrid CRI46 had a genetically higher root diameter at planting densities lower than 6.0 plants/m^2. Good associations were found between yield and RAI In different stages. The optimum planting density ranged from 4.50 plants/m^2 to 6.75 plants/m^2 for conventional cultlvars and around 4.0-5.0 plants/m^2 for hybrids. 展开更多
关键词 resource capture root area index root diameter root length density.
原文传递
Seasonal dynamics of fine root biomass, root length density, specific root length, and soil resource availability in a Larix gmelinii plantation 被引量:1
11
作者 CHENG Yunhuan HAN Youzhi +1 位作者 WANG Qingcheng WANG Zhengquan 《Frontiers in Biology》 CSCD 2006年第3期310-317,共8页
Fine root turnover is a major pathway for carbon and nutrient cycling in terrestrial ecosystems and is most likely sensitive to many global change factors.Despite the importance of fine root turnover in plant C alloca... Fine root turnover is a major pathway for carbon and nutrient cycling in terrestrial ecosystems and is most likely sensitive to many global change factors.Despite the importance of fine root turnover in plant C allocation and nutrient cycling dynamics and the tremendous research efforts in the past,our understanding of it remains limited.This is because the dynamics processes associated with soil resources availability are still poorly understood.Soil moisture,temperature,and available nitrogen are the most important soil characteristics that impact fine root growth and mortality at both the individual root branch and at the ecosystem level.In temperate forest ecosystems,seasonal changes of soil resource availability will alter the pattern of carbon allocation to belowground.Therefore,fine root biomass,root length density(RLD)and specific root length(SRL)vary during the growing season.Studying seasonal changes of fine root biomass,RLD,and SRL associated with soil resource availability will help us understand the mechanistic controls of carbon to fine root longevity and turnover.The objective of this study was to understand whether seasonal variations of fine root biomass,RLD and SRL were associated with soil resource availability,such as moisture,temperature,and nitrogen,and to understand how these soil components impact fine root dynamics in Larix gmelinii plantation.We used a soil coring method to obtain fine root samples(≤2 mm in diameter)every month from May to October in 2002 from a 17-year-old L.gmelinii plantation in Maoershan Experiment Station,Northeast Forestry University,China.Seventy-two soil cores(inside diameter 60 mm;depth intervals:0-10 cm,10-20 cm,20-30 cm)were sampled randomly from three replicates 25 m×30 m plots to estimate fine root biomass(live and dead),and calculate RLD and SRL.Soil moisture,temperature,and nitrogen(ammonia and nitrates)at three depth intervals were also analyzed in these plots.Results showed that the average standing fine root biomass(live and dead)was 189.1 g·m^(-2)·a^(-1),50%(95.4 g·m^(-2)·a^(-1))in the surface soil layer(0-10 cm),33%(61.5 g·m^(-2)·a^(-1)),17%(32.2 g·m^(-2)·a^(-1))in the middle(10-20 cm)and deep layer(20-30cm),respectively.Live and dead fine root biomass was the highest from May to July and in September,but lower in August and October.The live fine root biomass decreased and dead biomass increased during the growing season.Mean RLD(7,411.56 m·m^(-3)·a^(-1))and SRL(10.83 m·g^(-1)·a^(-1))in the surface layer were higher than RLD(1474.68 m·m^(-3)·a^(-1))and SRL(8.56 m·g^(-1)·a^(-1))in the deep soil layer.RLD and SRL in May were the highest(10621.45 m·m^(-3) and 14.83m·g^(-1))compared with those in the other months,and RLD was the lowest in September(2198.20 m·m^(-3))and SRL in October(3.77 m·g^(-1)).Seasonal dynamics of fine root biomass,RLD,and SRL showed a close relationship with changes in soil moisture,temperature,and nitrogen availability.To a lesser extent,the temperature could be determined by regression analysis.Fine roots in the upper soil layer have a function of absorbing moisture and nutrients,while the main function of deeper soil may be moisture uptake rather than nutrient acquisition.Therefore,carbon allocation to roots in the upper soil layer and deeper soil layer was different.Multiple regression analysis showed that variation in soil resource availability could explain 71-73%of the seasonal variation of RLD and SRL and 58%of the variation in fine root biomass.These results suggested a greater metabolic activity of fine roots living in soil with higher resource availability,which resulted in an increased allocation of carbohydrate to these roots,but a lower allocation of carbohydrate to those in soil with lower resource availability. 展开更多
关键词 Larix gmelinii fine root biomass root length density specific root length soil resource availability seasonal dynamics
原文传递
Coarse root spatial distribution determined using a ground-penetrating radar technique in a subtropical evergreen broad-leaved forest,China 被引量:3
12
作者 YAN Hui DONG XinLiang +2 位作者 FENG Gang ZHANG ShouRen MUCCIARDI Anthony 《Science China(Life Sciences)》 SCIE CAS 2013年第11期1038-1046,共9页
Coarse roots play a critical role in forest ecosystems and both abiotic and biotic factors affect their spatial distribution.To some extent,coarse root density may reflect the quantity of root biomass and biotic compe... Coarse roots play a critical role in forest ecosystems and both abiotic and biotic factors affect their spatial distribution.To some extent,coarse root density may reflect the quantity of root biomass and biotic competition in forests.However,using traditional methods(e.g.,excavation)to study coarse roots is challenging,because those methods are time-consuming and laborious.Furthermore,these destructive methods cannot be repeated in the same forests.Therefore,the discovery of non-destructive methods for root studies will be very significant.In this study,we used a ground-penetrating radar technique to detect the coarse root density of three habitats(ridge,slope and valley)and the dominant tree species(Castanopsis eyrei and Schima superba)in a subtropical forest.We found that(i)the mean of coarse root density for these three habitats was 88.04roots m–2,with roots being mainly distributed at depths of 0–40 cm.Coarse root densities were lower in deeper soils and in areas far from the trunk.(ii)Coarse root densities differed significantly among the three habitats studied here with slope habitat having the lowest coarse root density.Compared with S.superba,C.eyrei had more roots distributed in deeper soils.Furthermore,coarse roots with a diameter>3 cm occurred more frequently in the valleys,compared with root densities in ridge and slope habitats,and most coarse roots occurred at soil depths of 20–40 cm.(iii)The coarse root density correlated negatively with tree species richness at soil depths of 40–60 cm.The abundances of the dominant species,such as C.eyrei,Cyclobalanopsis glauca,Pinus massoniana,had significant impacts on coarse root density.(iv)The soil depth of 0–40 cm was the"basic distribution layer"for coarse roots since the majority of coarse roots were found in this soil layer with an average root density of 84.18 roots m–2,which had no significant linear relationships with topography,tree species richness,rarefied tree species richness and tree density.Significant relationships between coarse root density and these factors were found at the soil depth of40–60 cm,which was the"potential distribution layer"for coarse root distribution. 展开更多
关键词 abiotic factors biotic factors coarse root density ground-penetrating radar (GPR) spatial distribution
原文传递
Effects of layer thickness on desiccation cracking behaviour of a vegetated soil
13
作者 Congying Li Qing Cheng +3 位作者 Chaosheng Tang Yingdong Gu Lingxin Cui Haowen Guo 《Biogeotechnics》 2024年第2期47-53,共7页
The objective of this study is to explore how different layer thicknesses affect the desiccation cracking behaviour of vegetated soil.During the experiment,an electronic balance was employed to quantify water evaporat... The objective of this study is to explore how different layer thicknesses affect the desiccation cracking behaviour of vegetated soil.During the experiment,an electronic balance was employed to quantify water evaporation,while a digital camera was utilized to capture the initiation and progression of soil surface cracking.Results indicate that in the early drying process,the rate of evapotranspiration in vegetated soil correlates positively with leaf biomass.For soil samples with the same layer thickness,the constant rate stage duration is consistently shorter in vegetated soil samples than in their bare soil counterparts.As the layer thickness increases,both vegetated and bare soil samples crack at higher water content.However,vegetated soil samples crack at lower water content than their bare soil counterparts.Vegetation significantly reduces the soil surface crack ratio and improves the soil crack resistance.The crack reduction ratio is positively correlated with both root weight and length density.In thicker vegetated soil layers,the final surface crack length noticeably declines. 展开更多
关键词 Desiccation crack Vegetated soil Layer thickness root density
下载PDF
Combined Applications of Nitrogen and Phosphorus Fertilizers with Manure Increase Maize Yield and Nutrient Uptake via Stimulating Root Growth in a Long-Term Experiment 被引量:32
14
作者 WEN Zhihui SHEN Jianbo +3 位作者 Martin BLACKWELL LI Haigang ZHAO Bingqiang YUAN Huimin 《Pedosphere》 SCIE CAS CSCD 2016年第1期62-73,共12页
Imbalanced application of nitrogen(N) and phosphorus(P) fertilizers can result in reduced crop yield,low nutrient use efficiency,and high loss of nutrients and soil nitrate nitrogen(NO_3^--N) accumulation decreases wh... Imbalanced application of nitrogen(N) and phosphorus(P) fertilizers can result in reduced crop yield,low nutrient use efficiency,and high loss of nutrients and soil nitrate nitrogen(NO_3^--N) accumulation decreases when N is applied with P and/or manure;however,the effect of applications of N with P and/or manure on root growth and distribution in the soil profile is not fully understood.The aim of this study was to investigate the combined effects of different N and P fertilizer application rates with or without manure on maize(Zea mays L.) yield,N uptake,root growth,apparent N surplus,Olsen-P concentration,and mineral N(N_(min)) accumulation in a fluvo-aquic calcareous soil from a long-term(28-year) experiment.The experiment comprised twelve combinations of chemical N and P fertilizers,either with or without chicken manure,as treatments in four replicates.The yield of maize grain was 82%higher,the N uptake 100%higher,and the N_(min) accumulation 39%lower in the treatments with combined N and P in comparison to N fertilizer only.The maize root length density in the 30-60 cm layer was three times greater in the treatments with N and P fertilizers than with N fertilizer only.Manure addition increased maize yield by 50%and N uptake by 43%,and reduced N_(min)(mostly NO_3^--N) accumulation in the soil by 46%.The long-term application of manure and P fertilizer resulted in significant increases in soil Olsen-P concentration when no N fertilizer was applied.Manure application reduced the apparent N surplus for all treatments.These results suggest that combined N and P fertilizer applications could enhance maize grain yield and nutrient uptake via stimulating root growth,leading to reduced accumulation of potentially leachable NO_3^--N in soil,and manure application was a practical way to improve degraded soils in China and the rest of the world. 展开更多
关键词 apparent N surplus degraded soils chemical fertilizers nitrate nitrogen root length density soil mineral N soil Olson-P
原文传递
Quantifying relationships between rooting traits and water uptake under drought in Mediterranean barley and durum wheat 被引量:5
15
作者 Pedro Carvalho Sayed Azam-Ali M.John Foulkes 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2014年第5期455-469,共15页
In Mediterranean regions drought is the major factor limiting spring barley and durum wheat grain yields. This study aimed to compare spring barley and durum wheat root and shoot responses to drought and quantify rela... In Mediterranean regions drought is the major factor limiting spring barley and durum wheat grain yields. This study aimed to compare spring barley and durum wheat root and shoot responses to drought and quantify relationships between root traits and water uptake under terminal drought.One spring barley(Hordeum vulgare L. cv. Rum) and two durum wheat Mediterranean cultivars(Triticum turgidum L. var durum cvs Hourani and Karim) were examined in soil‐column experiments under well watered and drought conditions. Root system architecture traits, water uptake, and plant growth were measured. Barley aerial biomass and grain yields were higher than for durum wheat cultivars in well watered conditions. Drought decreased grain yield more for barley(47%) than durum wheat(30%, Hourani). Root‐to‐shoot dry matter ratio increased for durum wheat under drought but not for barley, and root weight increased for wheat in response todrought but decreased for barley. The critical root length density(RLD) and root volume density(RVD) for 90% available water capture for wheat were similar to(cv. Hourani) or lower than(cv. Karim) for barley depending on wheat cultivar. For both species, RVD accounted for a slightly higher proportion of phenotypic variation in water uptake under drought than RLD. 展开更多
关键词 BARLEY Mediterranean root architecture root length density root traits root volume density water wheat
原文传递
Quantifying the contribution of the root system of alpine vegetation in the soil aggregate stability of moraine 被引量:7
16
作者 Csilla Hudek Silvia Stanchi +1 位作者 Michele D’Amico Michele Freppaz 《International Soil and Water Conservation Research》 SCIE CSCD 2017年第1期36-42,共7页
One fifth of the world's population is living in mountains or in their surrounding areas.This anthropogenic pressure continues to grow with the increasing number of settlements,especially in areas connected to tou... One fifth of the world's population is living in mountains or in their surrounding areas.This anthropogenic pressure continues to grow with the increasing number of settlements,especially in areas connected to touristic activities,such as the Italian Alps.The process of soil formation on high mountains is particularly slow and these soils are particularly vulnerable to soil degradation.In alpine regions,extreme meteorological events are increasingly frequent due to climate change,speeding up the process of soil degradation and increasing the number of severe erosion processes,shallow landslides and debris flows.Vegetation cover plays a crucial role in the stabilization of mountain soils thereby reducing the risk of natural hazards effecting downslope areas.Soil aggregate stability is one of the main soil properties that can be linked to soil loss processes.Soils developed on moraines in recently deglaciated areas typically have low levels of soil aggregation,and a limited or discontinuous vegetation cover making them more susceptible to degradation.However,soil structure can be influenced by the root system of the vegetation.Roots are actively involved in the formation of water-stable soil aggregation,increasing the stability of the soil and its nutrient content.In the present study,we aim to quantify the effect of the root system of alpine vegetation on the soil aggregate stability of the forefield of the Lys glacier,in the Aosta Valley(NW-Italy).This proglacial area provides the opportunity to study how the root system of ten pioneer alpine species from different successional stages can contribute to soil development and soil stabilization.To quantify the aggregate stability of root permeated soils,a modified wet sieving method was employed.The root length per soil volume of the different species was also determined and later correlated with the aggregate stability results.The results showed that soil aggregate stability was significantly increased by the presence of roots.The lowest soil aggregate stability was found with Epilobium fleischeri followed by Minuartia recurva and Leucanthemopsis alpina.The highest aggregate stability was found with the graminoid species.These results show a close relationship between the development of root systems of the studied species and soil aggregate stability,a factor which can be taken into consideration in order to improve the accuracy of existing susceptibility mapping for early warning and civilian protection. 展开更多
关键词 Soil aggregate stability root length density Pioneer alpine species Glacier forefield
原文传递
Root Effect of Three Vegetation Types on Shoreline Stabilization of Chongming Island,Shanghai 被引量:3
17
作者 DU Qin,ZHONG Qi-Cheng and WANG Kai-Yun Shanghai Key Laboratory of Urbanization and Ecological Restoration,East China Normal University,Shanghai 200062 (China) 《Pedosphere》 SCIE CAS CSCD 2010年第6期692-701,共10页
Coastal erosion is currently a major problem along the southern coast of Chongming Island, Shanghai. To enhance the erosion protection ability of coastal shelterbelts, two woody tree species, Taxodium ascendens and Sa... Coastal erosion is currently a major problem along the southern coast of Chongming Island, Shanghai. To enhance the erosion protection ability of coastal shelterbelts, two woody tree species, Taxodium ascendens and Salix babylonica, were planted separately into Phragmites australis + Scirpus mariqueter communities in 2006. Two years later, we investigated whether either of these experiments reduced erosion and increased stability in the native herbaceous plant community. We also examined soil stability and root length density under T. aseendens added, S. babylonica added and native herbaceous vegetation conditions along an intertidal gradient from the soil surface to a depth of 40 cm in each experiment, thus to determine the capacity of T. ascendens and S. babylonica to contribute to shoreline stabilization. Topsoil under the native vegetation had greater stability at the middle and higher intertidal zones because its soil stability index and root length density were significantly higher than in the T. ascendens or S. babylonica planted communities. The effect of T. ascendens on soil stability was not generally better than that of the native vegetation. Only at the 20-30 cm soil depth of the middle intertidal zone and in the 10-20 cm layer of the higher intertidal zone the soil stability index and root length densities under the T. ascendens added condition were significantly higher (P 〈 0.05) than those of the native vegetation. The S. babylonica planted soil had greater stability in the deeper soil layer than the soil under either the native vegetation or the T. ascendens added condition, and its soil stability index and root length density were significant higher (P 〈 0.05) than those of other vegetation conditions at the 30 40 cm soil depth for the lower intertidal zone and at the 20-40 cm layer for middle and higher intertidal zones. 展开更多
关键词 coastal erosion root length density Salix babylonica soil stability index Taxodium ascendens
原文传递
Effects of nitrogen supply methods on fate of nitrogen in maize under alternate partial root-zone irrigation 被引量:2
18
作者 Dongliang Qi Tiantian Hu Xue Song 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2020年第3期129-135,共7页
Partial root-zone irrigation(PRI)has been practiced worldwide,but little information is available on nitrogen(N)supply methods influence on fate of applied N fertilizer for crop production under PRI.A field experiment... Partial root-zone irrigation(PRI)has been practiced worldwide,but little information is available on nitrogen(N)supply methods influence on fate of applied N fertilizer for crop production under PRI.A field experiment was conducted to investigate effect of N supply methods on the uptake,residual,and loss of applied N fertilizer in maize(Zea mays L.)under alternate PRI at Wuwei,northwest China in 2014.15N-labeled urea was used as N fertilizer.Two irrigation methods included alternate furrow irrigation(AI)and conventional furrow irrigation(CI).Two N fertilizer supply methods included conventional N supply(CN)and alternate N supply(AN),were applied in combination with each irrigation method.Grain yield,root length density(RLD),N uptake by maize at the maturity stage,and atom%of 15N excess,residual 15N and residual NO3-N in the 0-100 cm soil layer after maize harvest were determined.Results shown that compared to CI coupled with CN,AI coupled with AN or CN significantly increased the grain yield,harvest index,RLD,N uptake by maize,15N accumulation in grain,atom%of 15N excess in the 0-60 cm soil layer,the residual 15N and 15N uptake rates;but significantly decreased the residual NO3-N in the 0-100 cm soil layers and 15N loss rate.Moreover,the synchronized rather than separation supply of N fertilizer and water enhanced the most above parameters under AI.15N uptake rate was positively correlated with RLD in the 0-40 cm soil layer,suggesting that the enhanced RLD contributed to the improved 15N uptake rate.Therefore,alternate furrow irrigation coupled with conventional or alternate nitrogen supply(synchronized supply of N fertilizer and water)could help improve 15N uptake rate and reduce the 15N loss rate. 展开更多
关键词 15N-labeled technology root length density nitrogen fertilizer fate nitrogen management residual nitrogen
原文传递
Alternate partial root-zone irrigation with high irrigation frequency improves root growth and reduces unproductive water loss by apple trees in arid north-west China 被引量:2
19
作者 Shaoqing DU Ling TONG +4 位作者 Shaozhong KANG Fusheng LI Taisheng DU Sien LI Risheng DING 《Frontiers of Agricultural Science and Engineering》 2018年第2期188-196,共9页
Alternate partial root-zone irrigation(APRI)can improve water use efficiency in arid areas. However,the effectiveness and outcomes of different frequencies of APRI on water uptake capacity and physiological water use ... Alternate partial root-zone irrigation(APRI)can improve water use efficiency in arid areas. However,the effectiveness and outcomes of different frequencies of APRI on water uptake capacity and physiological water use have not been reported. A two-year field experiment was conducted with two irrigation amounts(400 and500 mm) and three irrigation methods(conventional irrigation, APRI with high and low frequencies). Root length density, stomatal conductance, photosynthetic rate,transpiration rate, leaf water use efficiency, midday stem and leaf water potentials were measured. The results show that in comparison with conventional irrigation, APRI with high frequency significantly increased root length density and decreased water potentials and stomatal conductance.No differences in the above indicators between the two APRI frequencies were detected. A significantly positive relationship between stomatal conductance and root length density was found under APRI. Overall, alternate partial root-zone irrigation with high frequency has a great potential to promote root growth, expand water uptake capacity and reduce unproductive water loss in the arid apple production area. 展开更多
关键词 alternate partial root-zone irrigation apple tree leaf water use efficiency root length density stomatal conductance water potential
原文传递
Response of spatial structure of cotton root to soil-wetting patterns under mulched drip irrigation
20
作者 Dongwei Li Mingsi Li +4 位作者 Xiaojun Shen Xinguo Zhou Hao Sun Yulong Zhao Wenjuan Chen 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2020年第5期153-162,共10页
The matching relationship between the spatial structure of cotton cluster root systems and soil-wetting patterns under mulched drip irrigation forms the theoretical basis for the technical design of mulched drip irrig... The matching relationship between the spatial structure of cotton cluster root systems and soil-wetting patterns under mulched drip irrigation forms the theoretical basis for the technical design of mulched drip irrigation.A 2-year field experiment was conducted,in which different soil-wetting patterns were produced by setting different emitter discharge rates.The envelopes of cotton cluster root length densities were derived using the topological methodology and used to examine the effects of different soil-wetting patterns on the spatial structure of root systems and water uptake capacity within row spaces.The results showed that the root systems in rows of cotton grown under narrower and deeper soil-wetting patterns exhibited a single-peak distribution,while those under wider and shallower soil-wetting patterns exhibited a two-peak distribution.Furthermore,cotton rows grown near mulch edges experienced lower moisture stress,and wider and shallower soil-wetting patterns contributed to greater root growth rates in the vertical direction and resulted in more even potential water uptake capacities.The findings of this study revealed that wider and shallower soil-wetting patterns were more desirable for mulched drip irrigation of cotton and should be considered in the technical design of drip irrigation systems. 展开更多
关键词 mulched drip irrigation soil-wetting pattern envelopes of cotton cluster root length densities soil matrix suction potential root water uptake capacity
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部