Root-knot nematodes(RKNs,Meloidogyne spp.) are obligate biotrophic parasites that settle close to the vascular tissues in plant roots.The diseases resulting from RKN infections cause serious damage to agricultural p...Root-knot nematodes(RKNs,Meloidogyne spp.) are obligate biotrophic parasites that settle close to the vascular tissues in plant roots.The diseases resulting from RKN infections cause serious damage to agricultural production worldwide.In the present paper,the resistance of Chinese leek(Allium tuberosum Rottler ex Sprengel) against RKNs,its suppressive effect on nematode disease,its nematicidal activity and its component profile were studied to identify an efficient disease control method.In soil heavily infected by nematodes,Chinese leek showed strong resistance to RKNs.Additionally,the gall indexes of cucumber plants rotated with Chinese leek and of tomato plants intercropped with Chinese leek were reduced by 70.2 and 41.1%,respectively.In a pot experiment,the gall indexes of Chinese leek extract-treated tomato and cucumber plants were reduced by 88.9 and 75.9%,respectively.In an in vitro experiment,the mortality rate of a RKN(Meloidogyne incognita J2) treated with Chinese leek extract was significantly higher than that of the control.The gas chromatography-mass spectrometry(GC-MS) analysis revealed that glycosides,carboxylic acids,ketones and organic sulfides are the main components in the Chinese leek extract.This study revealed that Chinese leek possesses a high resistance to RKNs,has strong nematicidal activity against M.incognita and can significantly reduce the incidence of disease caused by nematodes.展开更多
There is a general assumption in the literature that insect herbivory increases towards the tropics, but decreases with increasing altitude. Similar generalities have been identified along other environmental gradient...There is a general assumption in the literature that insect herbivory increases towards the tropics, but decreases with increasing altitude. Similar generalities have been identified along other environmental gradients, such as resource, temperature, climatic and biotic gradients. However there is growing evidence in the scientific literature that such generalities are not consistent. This could be due to a number of reasons including the lack of consistency in the way herbivory is assessed such as different methodologies used by researchers, or fundamental differences in leaf damage caused by different types of insect herbivores. Here we assess 61 publications researching insect herbivory along a range of environmental gradients (both biotic and abiotic) and review the methods that researchers have used to collected their data. We found leaf chewing from samples collected in North America dominated the field and most studies assessed herbivory on a single host plant species. Thirty three percent of the studies assessed latitudinal gradients, while 10% assessed altitudinal gradients. Insect herbivory was most commonly expressed as percentage leaf damage using point herbivory. Fewer studies measured a range of different types of herbivory (such as sap sucking, leaf mining, galling, and root feeding) as leaves aged. From our synthesis, we hope that future research into insect herbivory along environmental gradients will take into account herbivory other than just leaf chewing, such as sap sucking, which may cause more damage to plants. Future research should also assess herbivory as a rate, rather than just a single point in time as damage to a young leaf may be more costly to a plant than damage to a mature or senescing leaf. Measurements of plant traits will also assist in comparing herbivory across habitats, plant species, and within species physiological variation. The true impacts that insects have on plants via herbivory along environmental gradients are still poorly understood.展开更多
基金supported by the National Natural Science Foundation of China(31272151,31471864)the Agro-scientific Research in the Public Interest,China(201103018)the China Agriculture Research System(CARS-25)
文摘Root-knot nematodes(RKNs,Meloidogyne spp.) are obligate biotrophic parasites that settle close to the vascular tissues in plant roots.The diseases resulting from RKN infections cause serious damage to agricultural production worldwide.In the present paper,the resistance of Chinese leek(Allium tuberosum Rottler ex Sprengel) against RKNs,its suppressive effect on nematode disease,its nematicidal activity and its component profile were studied to identify an efficient disease control method.In soil heavily infected by nematodes,Chinese leek showed strong resistance to RKNs.Additionally,the gall indexes of cucumber plants rotated with Chinese leek and of tomato plants intercropped with Chinese leek were reduced by 70.2 and 41.1%,respectively.In a pot experiment,the gall indexes of Chinese leek extract-treated tomato and cucumber plants were reduced by 88.9 and 75.9%,respectively.In an in vitro experiment,the mortality rate of a RKN(Meloidogyne incognita J2) treated with Chinese leek extract was significantly higher than that of the control.The gas chromatography-mass spectrometry(GC-MS) analysis revealed that glycosides,carboxylic acids,ketones and organic sulfides are the main components in the Chinese leek extract.This study revealed that Chinese leek possesses a high resistance to RKNs,has strong nematicidal activity against M.incognita and can significantly reduce the incidence of disease caused by nematodes.
文摘There is a general assumption in the literature that insect herbivory increases towards the tropics, but decreases with increasing altitude. Similar generalities have been identified along other environmental gradients, such as resource, temperature, climatic and biotic gradients. However there is growing evidence in the scientific literature that such generalities are not consistent. This could be due to a number of reasons including the lack of consistency in the way herbivory is assessed such as different methodologies used by researchers, or fundamental differences in leaf damage caused by different types of insect herbivores. Here we assess 61 publications researching insect herbivory along a range of environmental gradients (both biotic and abiotic) and review the methods that researchers have used to collected their data. We found leaf chewing from samples collected in North America dominated the field and most studies assessed herbivory on a single host plant species. Thirty three percent of the studies assessed latitudinal gradients, while 10% assessed altitudinal gradients. Insect herbivory was most commonly expressed as percentage leaf damage using point herbivory. Fewer studies measured a range of different types of herbivory (such as sap sucking, leaf mining, galling, and root feeding) as leaves aged. From our synthesis, we hope that future research into insect herbivory along environmental gradients will take into account herbivory other than just leaf chewing, such as sap sucking, which may cause more damage to plants. Future research should also assess herbivory as a rate, rather than just a single point in time as damage to a young leaf may be more costly to a plant than damage to a mature or senescing leaf. Measurements of plant traits will also assist in comparing herbivory across habitats, plant species, and within species physiological variation. The true impacts that insects have on plants via herbivory along environmental gradients are still poorly understood.