期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
Effects of Free-air CO2 Enrichment on Root Characteristics and C:N Ratio of Rice at the Heading Stage 被引量:2
1
作者 CHEN Gai-ping CHENG Lei ZHU Jian-guo PANG Jing XIE Zu-bin ZENG Qing 《Rice science》 SCIE 2006年第2期120-124,共5页
A hydroponics experiment was conducted to investigate the rice root growth in FACE (free-air carbon dioxide enrichment). The root biomass, root volume, ratio of root/shoot, number of adventitious roots and root diam... A hydroponics experiment was conducted to investigate the rice root growth in FACE (free-air carbon dioxide enrichment). The root biomass, root volume, ratio of root/shoot, number of adventitious roots and root diameter significantly increased under FACE conditions, while the CO2 enrichment decreased the N concentration in rice roots without any change in the C content, leading to an increase in root C:N ratio. Moreover, the elevated CO2 resulted in a remarkable decrease of root activity, expressed as per unit root dry weight, which might be responsible for decreased N concentration in roots. 展开更多
关键词 free-air CO2 enrichment (FACE) RICE root C:N ratio root activity
下载PDF
伊朗里海森林山坡上生长的欧洲鹅耳根系分布和抗张强度研究 被引量:4
2
作者 Ehsan Abdi Baris Majnounian +1 位作者 Hassan Rahimi Mahmud Zobeiri 《Journal of Forestry Research》 SCIE CAS CSCD 2009年第2期105-110,I0001,共7页
Biomechanical characteristics of the root system of hornbeam (Carpinus betulus) were assessed by measuring Root Area Ratio (RAR) values and tensile strength of root specimens of eight hornbeam trees growing on hil... Biomechanical characteristics of the root system of hornbeam (Carpinus betulus) were assessed by measuring Root Area Ratio (RAR) values and tensile strength of root specimens of eight hornbeam trees growing on hilly terrain of Northern Iran. RAR values of the roots were obtained using profile trenching method at soil depth of the top 0.1 m. In total 123 root specimens were analyzed for tensile strength. Results indicate that in general, RAR decreases with depth, following a power function. The RAR values in up and down slopes have no significant statistical differences. In most cases, the maximum RAR values were located in soil depth of the top 0.1 m, with maximum rooting depth at about 0.75 m. The minimum and maximum RAR values along the profiles were 0.004% and 6.431% for down slope and 0.004% and 3.995% for up slope, respectively. The number of roots in the up and down slope trenches was not significantly different. In the same manner as for RAR, number of roots distributing with depth was satisfactorily approximated a power function. The penetration depths of above 90 percent of the roots were at soil depths of 50 cm and 60 cm for up and down slopes, respectively. Results of Spearman's bivariate correlation showed no significant correlation between the RAR value with tree diameter and gradient of slope and number of roots. The mean value of root tensile strength was 31.51 ± 1.05 MPa and root tensile strength decreased with the increase in root diameter, following a power law equation. Using ANCOVA, we found intraspecies variation of tensile strength. 展开更多
关键词 BIOMECHANICAL Hornbeam Carpinus betulus root area ratio (RAR) root system root tensile strength.
下载PDF
Precipitation amount and frequency affect seedling emergence and growth of Reaumuria soongarica in northwestern China 被引量:5
3
作者 SHAN Lishan ZHAO Wenzhi +2 位作者 LI Yi ZHANG Zhengzhong XIE Tingting 《Journal of Arid Land》 SCIE CSCD 2018年第4期574-587,共14页
Climate change is shifting the amount and frequency of precipitation in many regions, which is expected to affect seedling recruitment across ecosystems. However, the combined effects of precipitation amount and frequ... Climate change is shifting the amount and frequency of precipitation in many regions, which is expected to affect seedling recruitment across ecosystems. However, the combined effects of precipitation amount and frequency on seedling recruitment remain largely unknown. An understanding of the effects of precipitation amount and frequency and their interaction on seedling emergence and growth of typical desert plants is vital for managing populations of desert plants. We conducted two experiments to study the effects of variation in precipitation on Reaumuria soongarica (Pall.) Maxim. First, greenhouse experiments were conducted to examine the effects of three precipitation amount treatments (ambient, +30%, and -30%) and two precipitation frequency treatments (ambient and -50%) on seedling emergence. Second, the morphological responses of R. soongarica to changes in precipitation amount and frequency were tested in a controlled field experiment. Stage-specific changes in growth were monitored by sampling in different growth seasons. Our results showed that precipitation amount significantly affected germination, seedling emergence, and growth of R. soongarica, and there was a larger effect with decreased precipitation frequency compared with ambient. Germination and seedling emergence increased as precipitation increased under the same frequency of precipitation. The highest emergence percentage was obtained with a 30% increase in precipitation amount and a 50% reduction in precipitation frequency. Compared with ambient precipitation, a 30% increase in precipitation amount increased above- and below-ground biomass accumulation of R. soongarica during the growth season. A decrease of 30% in precipitation amount also resulted in an increase in below-ground biomass and root/shoot ratio in the early stages of the growth season, however, above- and below-ground biomass showed the opposite results at the end of the growth season, with larger effects on above-ground than below-ground biomass under decreased precipitation frequency. When precipitation frequency decreased by 50%, values of all growth traits increased for a given amount of precipitation. We concluded that precipitation frequency may be as important as precipitation amount to seedling emergence and growth of R. soongarica, and that understanding the effects of precipitation variability on seedling recruitment requires the integration of both precipitation amount and frequency. In particular, the combination of a 30% increase in precipitation amount and 50% reduction in precipitation frequency increased the emergence and growth of seedlings, suggesting that alteration of amount and frequency of precipitation caused by climate change may have significant effects on seedling recruitment of R. soongarica. 展开更多
关键词 precipitation patterns seedling emergence BIOMASS root/shoot ratio seedling recruitment
下载PDF
Biomass Components and Environmental Controls in Ningxia Grasslands 被引量:10
4
作者 WANG Kai-bo LI Jian-ping SHANGGUAN Zhou-ping 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2012年第12期2079-2087,共9页
Grassland plays an important role in the global carbon cycle and climate regulation. However, there are still large uncertainties in grassland carbon pool and also its role in global carbon cycle due to the lack of me... Grassland plays an important role in the global carbon cycle and climate regulation. However, there are still large uncertainties in grassland carbon pool and also its role in global carbon cycle due to the lack of measured grassland biomass at regional scale or global scale with a unified survey method, particular for below-ground biomass. The present study, based on a total of 44 grassland sampling plots with 220 quadrats across Ningxia, investigated the characteristics of above-ground biomass (AGB), below-ground biomass (BGB), litter biomass (LB), total biomass (TB) and root:shoot ratios (R:S) for six predominantly grassland types, and their relationships with climatic factors. AGB, BGB, LB and TB varied markedly across different grassland types, the median value ranging from 28.2-692.6 g m-2 for AGB, 130.4-2 036.6 g m-: for BGB, 9.2-82.3 g m2 for LB, and 168.0-2 681.3 g m-: for TB. R:S showed less variation with median values from 3.2 to 5.3 (excluding marshy meadow). The different grassland types showed similar patterns of biomass allocation, with more than 70% BGB for all types. There is evidence of strong positive effects associated with mean annual precipitation (MAP) and negative effects associated with mean annual temperature (MAT) on AGB, BGB, and LB, although both factors have the opposite effect on R:S. 展开更多
关键词 grasslands above-ground biomass (AGB) below-ground biomass (BGB) root:shoot ratios (R:S) mean annual precipitation (MAP) mean annual temperature (MAT)
下载PDF
Biomass production and carbon balance in two hybrid poplar(Populus euramericana)plantations raised with and without agriculture in southern France 被引量:2
5
作者 Kaushalendra Kumar Jha 《Journal of Forestry Research》 SCIE CAS CSCD 2018年第6期1689-1701,共13页
Poplar is useful in different climates for bioenergy production and carbon sequestration when planted as a single species or in agroforestry. Europe has large areas potentially suitable for poplar forestry and a bioen... Poplar is useful in different climates for bioenergy production and carbon sequestration when planted as a single species or in agroforestry. Europe has large areas potentially suitable for poplar forestry and a bioenergy policy that would encourage poplar forestry. In this study I estimated biomass production and carbon sequestration in poplar monoculture plantation and poplar-wheat agroforestry, in the Mediterranean region of France. A single-tree harvesting method was used to estimate biomass and an empirical conversion factor was adopted to calculate sequestered carbon. Total biomass was higher in agroforestry trees(1223 kg tree) than in monoculture plantation trees(1102 kg tree).Aboveground and belowground biomass distributions were similar in both cases(89 and 88% aboveground, and 11 and12% belowground, respectively in agroforestry and monoculture). The partitioning of total biomass in an agroforestry tree in leaves, branch, and trunk(aboveground), and fine roots, medium roots, coarse roots and underground stem(belowground) was 1,22,and 77,and 6,9, 44 and 40%,respectively. Except for branch and trunk, all other compartments were similarly distributed in a monoculture tree.Storage of C was higher in agroforestry trees(612 kg tree)than in monoculture trees(512 kg tree). In contrast, C storage on a per hectare basis was lower in agroforestry(85 Mg ha) than in monoculture(105 Mg ha) due to the lower density of trees per hectare in agroforestry(139 trees in agroforestry vs 204 trees in monoculture). On a per hectare basis, soil C stocks pattern were similar to per tree stocking:They were higher in agroforestry at 330 Mg hathan in monoculture 304 Mg ha. Higher C accumulation by agroforestry has a direct management implication in the sense that expanding agroforestry into agriculture production areas with short rotation and fast growing trees like poplar would encourage quicker and greater C sequestration. This could simultaneously fulfil the requirement of bioenergy plantation in Europe. 展开更多
关键词 Populus euramericana Wood volume and density Root:shoot ratio Vegetation and soil carbon System efficiency
下载PDF
Physiological Responses of Two Wheat Cultivars to Nitrogen Starvation 被引量:1
6
作者 WANG Xiao-li SHAN Yu-hua +2 位作者 WANG Su-hua DU Yan FENG Ke 《Agricultural Sciences in China》 CAS CSCD 2011年第10期1577-1585,共9页
Plants need to be efficient in nutrient management, especially when they face the temporal nutrient defficiencies. Understanding how crops respond to nitrogen (N) starvation would help in the selection of crop culti... Plants need to be efficient in nutrient management, especially when they face the temporal nutrient defficiencies. Understanding how crops respond to nitrogen (N) starvation would help in the selection of crop cultivars more tolerant to N deficiency. In the present work, the physiological responses of two wheat cultivars, Yannong 19 (YN) and Qinmai 11 (QM), to N starvation conditions were investigated. The two cultivars differed in biomass and N rearrangement between shoots and roots during N starvation. QM allocated more N to roots and exhibited higher root/shoot biomass ratio than YN. However, tissue measurement indicated that both cultivars had similar nitrate content in leaves and roots and similar remobilization rate in roots. Microelectrode measurement showed that vacuolar nitrate activity (concentration) in roots of QM was lower than that in roots of YN, especially in epidermal cells. Nitrate remobilization rates from root vacuoles of two cultivars were also identical. Moreover, vacuolar nitrate remobilization rate was proportional to vacuolar nitrate activity. During N starvation, nitrate reductase activity (NRA) was decreased but there were no significant differences between the two cultivars. Nitrate efflux from roots reduced after external N removal and QM seemed to have higher nitrate efflux rate. 展开更多
关键词 nitrogen starvation WHEAT nitrate remobilization root/shoot ratio ion-selective microelectrodes
下载PDF
Water adaptive traits of deep-rooted C_3 halophyte(Karelinia caspica(Pall.) Less.) and shallow-rooted C_4 halophyte(Atriplex tatarica L.) in an arid region,Northwest China
7
作者 Yuan FAN PinFang LI +3 位作者 ZhenAn HOU TuSheng REN ChunLian XIONG Biao ZHANG 《Journal of Arid Land》 SCIE 2012年第4期469-478,共10页
This paper focused on the water relations of two halophytes differing in photosynthetic pathway, phe- notype, and life cycle: Karelinia caspica (Pall.) Less. (C3, deep-rooted perennial Asteraceae grass) and Atrip... This paper focused on the water relations of two halophytes differing in photosynthetic pathway, phe- notype, and life cycle: Karelinia caspica (Pall.) Less. (C3, deep-rooted perennial Asteraceae grass) and Atriplex tatarica L. (C4, shallow-rooted annual Chenopodiaceae grass). Gas exchange, leaf water potential, and growth characteristics were investigated in two growing seasons in an arid area of Xinjiang to explore the physiological adaptability of the two halophytes. Both K. caspica and A. tatarica showed midday depression of transpiration, in- dicating that they were strong xerophytes and weak midday depression types. The roots of A. tatarica were con- centrated mainly in the 0-60 cm soil layer, and the leaf water potential (~L) increased sharply in the 0-20 cm layer due to high soil water content, suggesting that the upper soil was the main water source. On the other hand, K. caspica had a rooting depth of about 1.5 m and a larger root/shoot ratio, which confirmed that this species uptakes water mainly from deeper soil layer. Although A. tatarica had lower transpiration water consumption, higher water use efficiency (WUE), and less water demand at the same leaf water potential, it showed larger water stress impact than K. caspica, indicating that the growth of A. tatarica was restricted more than that of K. caspica when there was no rainfall recharge. As a shallow-rooted C4 species, A. tatarica displayed lower stomatal conductance, which could to some extent reduce transpiration water loss and maintain leaf water potential steadily. In contrast, the deep-rooted C3 species K. caspica had a larger root/shoot ratio that was in favor of exploiting groundwater. We concluded that C3 species (K. caspica) tapes water and C4 species (A. tatarica) reduces water loss to survive in the arid and saline conditions. The results provided a case for the phenotype theory of Schwinning and Ehleringer on halophytic plants. 展开更多
关键词 Karelinia caspica Atriplex tatarica root/shoot ratio leaf water potential stomatal conductance TRANSPIratioN
下载PDF
Changes in individual plant traits and biomass allocation in alpine meadow with elevation variation on the Qinghai-Tibetan Plateau 被引量:20
8
作者 MA WeiLing SHI PeiLi +4 位作者 LI WenHua HE YongTao ZHANG XianZhou SHEN ZhenXi CHAI SiYue 《Science China(Life Sciences)》 SCIE CAS 2010年第9期1142-1151,共10页
Plant traits and individual plant biomass allocation of 57 perennial herbaceous species,belonging to three common functional groups (forbs,grasses and sedges) at subalpine (3700 m ASL),alpine (4300 m ASL) and subniva... Plant traits and individual plant biomass allocation of 57 perennial herbaceous species,belonging to three common functional groups (forbs,grasses and sedges) at subalpine (3700 m ASL),alpine (4300 m ASL) and subnival (≥5000 m ASL) sites were examined to test the hypothesis that at high altitudes,plants reduce the proportion of aboveground parts and allocate more biomass to belowground parts,especially storage organs,as altitude increases,so as to geminate and resist environmental stress.However,results indicate that some divergence in biomass allocation exists among organs.With increasing altitude,the mean fractions of total biomass allocated to aboveground parts decreased.The mean fractions of total biomass allocation to storage organs at the subalpine site (7%±2% S.E.) were distinct from those at the alpine (23%±6%) and subnival (21%±6%) sites,while the proportions of green leaves at all altitudes remained almost constant.At 4300 m and 5000 m,the mean fractions of flower stems decreased by 45% and 41%,respectively,while fine roots increased by 86% and 102%,respectively.Specific leaf areas and leaf areas of forbs and grasses deceased with rising elevation,while sedges showed opposite trends.For all three functional groups,leaf area ratio and leaf area root mass ratio decreased,while fine root biomass increased at higher altitudes.Biomass allocation patterns of alpine plants were characterized by a reduction in aboveground reproductive organs and enlargement of fine roots,while the proportion of leaves remained stable.It was beneficial for high altitude plants to compensate carbon gain and nutrient uptake under low temperature and limited nutrients by stabilizing biomass investment to photosynthetic structures and increasing the absorption surface area of fine roots.In contrast to forbs and grasses that had high mycorrhizal infection,sedges had higher single leaf area and more root fraction,especially fine roots. 展开更多
关键词 Qinghai-Tibetan Plateau climate stress biomass allocation shoot/root ratio plant traits fine roots
原文传递
Patterns of above-and belowground biomass allocation in China's grasslands:Evidence from individual-level observations 被引量:56
9
作者 WANG Liang NIU KeChang +1 位作者 YANG YuanHe ZHOU Peng 《Science China(Life Sciences)》 SCIE CAS 2010年第7期851-857,共7页
Above-and belowground biomass allocation not only influences growth of individual plants,but also influences vegetation structures and functions,and consequently impacts soil carbon input as well as terrestrial ecosys... Above-and belowground biomass allocation not only influences growth of individual plants,but also influences vegetation structures and functions,and consequently impacts soil carbon input as well as terrestrial ecosystem carbon cycling.However,due to sampling difficulties,a considerable amount of uncertainty remains about the root:shoot ratio(R/S),a key parameter for models of terrestrial ecosystem carbon cycling.We investigated biomass allocation patterns across a broad spatial scale.We collected data on individual plant biomass and systematically sampled along a transect across the temperate grasslands in Inner Mongolia as well as in the alpine grasslands on the Tibetan Plateau.Our results indicated that the median of R/S for herbaceous species was 0.78 in China's grasslands as a whole.R/S was significantly higher in temperate grasslands than in alpine grasslands(0.84 vs.0.65).The slope of the allometric relationship between above-and belowground biomass was steeper for temperate grasslands than for alpine.Our results did not support the hypothesis that aboveground biomass scales isometrically with belowground biomass.The R/S in China's grasslands was not significantly correlated with mean annual temperature(MAT) or mean annual precipitation(MAP).Moreover,comparisons of our results with previous findings indicated a large difference between R/S data from individual plants and communities.This might be mainly caused by the underestimation of R/S at the individual level as a result of an inevitable loss of fine roots and the overestimation of R/S in community-level surveys due to grazing and difficulties in identifying dead roots.Our findings suggest that root biomass in grasslands tended to have been overestimated in previous reports of R/S. 展开更多
关键词 aboveground biomass ALLOMETRY alpine grassland belowground biomass Inner Mongolia isometric relationship root:shoot ratio temperate grassland Tibetan Plateau
原文传递
Effects of seed furrow liquid spraying device on sowing quality and seedling growth of maize 被引量:2
10
作者 Wenjun Wang Wanpeng Wang +2 位作者 Honglei Jia Jian Zhuang Qi Wang 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2019年第2期68-74,共7页
The two cultivation patterns,no-tillage and ridge cultivation,are widely used in maize planting in Northeast China.However,the seed bounce in the falling process and drought seriously at the seedling stage often occur... The two cultivation patterns,no-tillage and ridge cultivation,are widely used in maize planting in Northeast China.However,the seed bounce in the falling process and drought seriously at the seedling stage often occur to affect the sowing quality,mean emergence time,percentage of emergence,root biomass,aboveground biomass and root shoot ratio of maize,and eventually reduces the grain yield.To solve the problems,a seed furrow liquid spraying device was designed and thereby the effects of spraying water volumes[0 L/m(V0),0.6 L/m(V1),1.2 L/m(V2)and 1.8 L/m(V3)]and nozzle types[conical nozzle(N1)and sectorial nozzle(N2)]on the sowing quality and seedling growth of maize were studied.The water volume and nozzle type had significant effects on the sowing quality(QR,CV,LD),not seedling growth(MET,PE,RB,AB,RSR)(p<0.05).Spraying water into seed furrow further humidified the soils around the maize seeds,effectively suppressing the bounce and rolling of seed and significantly promoting the growth and development of seeds.The sowing quality in the N2 treatment was significantly better than that in the N1 treatment.The qualified rate of seed spacing was increased with the increase of the water volume(V3>V2>V1>V0).However,the variability coefficient of seed spacing and lateral deviation of seed position were the opposite.The larger spraying water volume led to shorter mean emergence time(V0>V1>V2>V3)and higher percentage of emergence(V3>V2>V1>V0).The root biomass and aboveground biomass increased significantly with the enlargement of spraying water volume.Under different water volumes,the root shoot ratio differed significantly.The plants in the V1,V2 and V3 treatments had lower root shoot ratios compared with the V0 treatment.The increase of spraying water volume significantly reduced the root shoot ratio.The seed furrow liquid spraying device provides a reference for improving sowing quality and promoting seedling growth. 展开更多
关键词 seed bounce DROUGHT spraying water volume nozzle type seed spacing uniformity root shoot ratio
原文传递
Contrasting responses of legume versus non-legume shrubs to soil water and nutrient shortages in the Mu Us Sandland 被引量:1
11
作者 Yuan Sui Qingguo Cui +1 位作者 Ming Dong Weiming He 《Journal of Plant Ecology》 SCIE 2011年第4期268-274,共7页
Legumes and non-legumes usually differ in using soil water and nutrients.Both water and nutrients are scarce in the semi-arid Mu Us Sandland where legume and/or non-legume shrubs coexist/dominate.Here,we addressed the... Legumes and non-legumes usually differ in using soil water and nutrients.Both water and nutrients are scarce in the semi-arid Mu Us Sandland where legume and/or non-legume shrubs coexist/dominate.Here,we addressed the responses of legume versus nonlegume shrubs to different soil water and nutrient conditions.Methods We conducted an experiment in which a legume(Hedysarum laeve)and a non-legume(Artemisia ordosica)were used,both of which are dominant species in the Mu Us Sandland.Seedlings of these two species were subjected to three water levels(45.0,67.5 and 90.0 ml every 3 days)and three nutrient treatments(0,0.1%and 0.2%nutrient solution every week)during the experiment.Important Findings Interactions between water and nutrients on total biomass,root weight ratio and rain use efficiency(RUE)were detected in A.ordosica but not in H.laeve,suggesting that water effects on A.ordosica but not on H.laeve are dependent on soil nutrients.Nutrient addition alleviated drought stress and increased RUE in A.ordosica.The interspecific differences in response to soil water and nutrients may be linked to the ability of plants to fix nitrogen.In addition,under lowsoil water or nutrient conditions,H.laeve produced more biomass than A.ordosica,and the opposite was the case under high-soil resources.The relationship between relative growth rate(RGR)and RUE[or nutrient use efficiency(NUE)]varied with two species.RGR of A.ordosica was positively correlated with both RUE and NUE while RGR of H.laeve was negatively correlated with NUE.The different responses may be linked to the trade-off between high-growth rate and low-resource use efficiency. 展开更多
关键词 biomass legume versus non-legume rain use efficiency resource use strategies root weight ratio
原文传递
Closely related allopatric Podalyria species from the Core Cape Subregion differ in their mechanisms for acquisition of phosphorus,growth and ecological niche 被引量:1
12
作者 Pravin M.Maistry A.Muthama Muasya +2 位作者 Alex J.Valentine Louise Zdanow Samson B.M.Chimphango 《Journal of Plant Ecology》 SCIE 2016年第4期451-463,共13页
Aims In the Core Cape Subregion(CCR),a Mediterranean-climate ecosystem with infertile soils,the legume species Podalyria calyptrata and P.burchellii are in a separate clade to P.leipoldtii and P.myrtillifolia.The clos... Aims In the Core Cape Subregion(CCR),a Mediterranean-climate ecosystem with infertile soils,the legume species Podalyria calyptrata and P.burchellii are in a separate clade to P.leipoldtii and P.myrtillifolia.The closely related species are allopatric,and with the west-east climate gradient and variation in soil nutrient availability in the CCR,it was hypothesized that the two closely related allopatric species would differ in their ecological niche and root:shoot ratio,specific root length(SRL)and organic acid exudation responses to phosphorus(P)supply.Methods With increasing P supply in the glasshouse,we measured plant biomass,leaf nitrogen([N]),[P],root morphology and release of organic acids.We determined species soil and leaf[N]and[P]and climate in field sites.Important FindingsAt low P supply,P.calyptrata roots exuded more organic acids than P.burchellii which instead produced roots with a greater SRL,and P.myrtillifolia allocated more biomass to roots than P.leipoldtii.In the field,leaf[P]and climate suggested that P.leipoldtii occupied the most oligotrophic niche followed by P.burchellii and then P.calyptrata and P.myrtillifolia.Closely related allopatric species differed in their mechanisms for P-acquisition and ecological niche,indicating that the environment overrides phylogeny in determining P-acquisition traits for these species,and suggesting that climate regulates nutrient availability,driving distribution and speciation. 展开更多
关键词 climate distribution NODULES organic acids root:shoot ratio specific root length
原文传递
A comparison on the phytoremediation ability of triazophos by different macrophytes 被引量:2
13
作者 Zhu Li Huiping Xiao +3 位作者 Shuiping Cheng Liping Zhang Xiaolong Xie Zhenbin Wu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2014年第2期315-322,共8页
The strategy of choosing suitable plants should receive great performance in phytoremediation of surface water polluted by triazophos (O,O-diethyl-O-(1-phenyl- 1,2,4-triazol-3-base) sulfur phosphate, TAP), which i... The strategy of choosing suitable plants should receive great performance in phytoremediation of surface water polluted by triazophos (O,O-diethyl-O-(1-phenyl- 1,2,4-triazol-3-base) sulfur phosphate, TAP), which is an organophosphorus pesticide widespread applied for agriculture in China and moderately toxic to higher animal and fish. The tolerance, uptake, transformation and removal of TAP by twelve species of macrophytes were examined in a hydroponic system and a comprehensive score (CS) of five parameters (relative growth rate (RGR), biomass, root/shoot ratio, removal capacity (RC), and bio-concentration factor (BCF)) by factor analysis was employed to screen the potential macrophyte species for TAP phytoremediation. The results showed that Thalia dealbata, Cyperus alternifolius, Canna indica and Acorus calamus had higher RGR values, indicating these four species having stronger growth capacity under TAP stress. The higher RC loading in Iris pseudacorus and Cyperus rotundus were 42.11 and 24.63μg/(g fw.day), respectively. The highest values of BCF occurred in A. calamus (1.17), and TF occurred in Eichhornia crassipes (2.14). Biomass and root/shoot ratio of plant showed significant positive correlation with first-order kinetic constant of TAP removal in the hydroponic system, indicating that plant biomass and root system play important roles in remediation of TAP. Five plant species including C. alternifolius, A. calamus, T. dealbata, C. indica and Typha orientalis, which owned higher CS, would be potential species for TAP phytoremediation of contaminated water bodies. 展开更多
关键词 pesticide removal capacity relative growth rate bio-concentration factor transfer factor root/shoot ratio factor analysis
原文传递
Nondestructive estimation of bok choy nitrogen status with an active canopy sensor in comparison to a chlorophyll meter
14
作者 Rongting JI Weiming SHI +2 位作者 Yuan WANG Hailin ZHANG Ju MIN 《Pedosphere》 SCIE CAS CSCD 2020年第6期769-777,共9页
Precise estimation of vegetable nitrogen(N)status is critical in optimizing N fertilization management.However,nondestructive and accurate N diagnostic methods for vegetables are relatively scarce.In our two-year fiel... Precise estimation of vegetable nitrogen(N)status is critical in optimizing N fertilization management.However,nondestructive and accurate N diagnostic methods for vegetables are relatively scarce.In our two-year field experiment,we evaluated whether an active canopy sensor(GreenSeeker)could be used to nondestructively predict N status of bok choy(Brassica rapa subsp.chinensis)compared with a chlorophyll meter.Results showed that the normalized difference vegetation index(NDVI)and ratio vegetation index(RVI)generated by the active canopy sensor were well correlated with the aboveground biomass(AGB)(r=0.698–0.967),plant N uptake(PNU)(r=0.642–0.951),and root to shoot ratio(RTS)(r=-0.426 to-0.845).Compared with the chlorophyll meter,the active canopy sensor displayed much higher accuracy(5.0%–177.4%higher)in predicting AGB and PNU and equal or slightly worse(0.54–1.82 times that of the chlorophyll meter)for RTS.The sensor-based NDVI model performed equally well in estimating AGB(R2=0.63)and PNU(R2=0.61),but the meter-based model predicted RTS better(R2=0.50).Inclusion of the days after transplanting(DAT)significantly improved the accuracy of sensor-based AGB(19.0%–56.7%higher)and PNU(24.6%–84.6%higher)estimation models.These findings suggest that the active canopy sensor has a great potential for nondestructively estimating N status of bok choy accurately and thus for better N recommendations,especially with inclusion of DAT,and could be applied to more vegetables with some verification. 展开更多
关键词 aboveground biomass GreenSeeker model prediction N diagnosis normalized difference vegetation index plant N uptake root to shoot ratio ratio vegetation index soil and plant analyer development(SPAD)
原文传递
Screening of tall fescue genotypes for relative water content and osmotic potential under drought stress
15
作者 Francis M.Kirigwi Malay C.Saha 《Grassland Research》 2022年第2期84-93,共10页
Background:Tall fescue(Festuca arundinacea Schreb.)is an important coolseason perennial grass.Its persistence and forage yield can be severely affected by drought stresses during the hot,dry summers of the southern US... Background:Tall fescue(Festuca arundinacea Schreb.)is an important coolseason perennial grass.Its persistence and forage yield can be severely affected by drought stresses during the hot,dry summers of the southern USA.Methods:One thousand tall fescue genotypes were evaluated in the greenhouse for high relative water content(RWC)and low cell sap osmotic potential(OP).Fifty contrasting genotypes for the two traits were identified and used in further greenhouse and field studies.These genotypes were also screened with 30%PEG8000.Root and shoot characteristics were studied in 10 genotypes.Results:The genotypes differed for RWC(33.7%–97.3%,mean:79.7%)and had an almost fivefold difference in OP(−0.5 to−2.4 MPa,mean:−1.2 MPa).Significant variation(p<0.001)for the main effects of environment and genotypes was found for RWC and OP.Apart from the greenhouse trial,no correlation was found between RWC and OP,indicating that differences in RWC might have been due to factors other than osmotic adjustment.Genotypes with either long roots or high root weights,and high root/shoot ratios demonstrated high RWC and low OP.Conclusions:Genotypes with consistently high RWC and low OP were identified and used for the development of mapping populations and transcriptome studies. 展开更多
关键词 drought tolerance osmotic potential relative water content root/shoot ratio tall fescue
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部