Simulation models are tools that can be used to explore, for example, effects of cultural practices on soil erosion and irrigation on crop yield. However, often these models require many soil related input data of whi...Simulation models are tools that can be used to explore, for example, effects of cultural practices on soil erosion and irrigation on crop yield. However, often these models require many soil related input data of which the saturated hydraulic conductivity (Ks) is one of the most important ones. These data are usually not available and experimental determination is both expensive and time consuming. Therefore, pedotransfer functions are often used, which make use of simple and often readily available soil information to calculate required input values for models, such as soil hydraulic values. Our objective was to test the Rosetta pedotransfer function to calculate Ks. Research was conducted in a 64-ha field near Lamesa, Texas, USA. Field measurements of soil texture and bulk density, and laboratory measurements of soil water retention at field capacity (–33 kPa) and permanent wilting point (–1500 kPa), were taken to implement Rosetta. Calculated values of Ks were then compared to measured Ks on undisturbed soil samples. Results showed that Rosetta could be used to obtain values of Ks for a field with different textures. The Root Mean Square Difference (RMSD) of Ks at 0.15 m soil depth was 7.81 × 10–7 m·s–1. Further, for a given soil texture the variability, from 2.30 × 10–7 to 2.66 × 10–6 m·s-1, of measured Ks was larger than the corresponding RMSD. We conclude that Rosetta is a tool that can be used to calculate Ks in the absence of measured values, for this particular soil. Level H5 of Rosetta yielded the best results when using the measured input data and thus calculated values of Ks can be used as input in simulation models.展开更多
Water quality of Rosetta Branch may be changed by several factors in the last decades as a result of anthropogenic activities. So, it’s important to study the physicochemical characteristics of both water and sedimen...Water quality of Rosetta Branch may be changed by several factors in the last decades as a result of anthropogenic activities. So, it’s important to study the physicochemical characteristics of both water and sediment in the Rosetta Branch. Two identified sources are the main origin of most pollutants in this branch, namely: El-Rahawy drain and industrial activities in Kafr El-Zayat city. From the data of water quality index (WQI) based on six important parameters (pH, T °C, DO, BOD, COD and TP), it indicates that site 2 (from Kom Hamada to Edfina) is more polluted than the other two sites (from El-Qanater El-Khairia to Kom Hamada and from Edfina to Rosetta). The concentrations of heavy metals increase in sites that are more affected by drainage water from different drains. Great efforts are needed and wastewater must be treated before draining it into the River Nile water.展开更多
The El-Rahawy and the Tala drains are the major sources of pollution along the Rosetta branch. The El-Rahawy drain receives primary treated wastewater from the Abu-Rawash Wastewater Treatment Plant (WWTP), while the T...The El-Rahawy and the Tala drains are the major sources of pollution along the Rosetta branch. The El-Rahawy drain receives primary treated wastewater from the Abu-Rawash Wastewater Treatment Plant (WWTP), while the Tala drain receives discharge from dairy industry and agricultural drainage, as well as domestic wastewater. This research involved attempting to study the effect of improving water quality on the El-Rahawy and the Tala drains in the Rosetta branch water quality. Water quality at the El-Rahawy drain is expected to improve after discharging water from the Al-Buhairi Water Canal to the El-Rahawy drain and improving effluent water quality at the Abu-Rawash WWTP. Water quality at the Tala drain is expected to improve after constructing a new WWTP and improving effluent water quality at the dairy industry. The river pollutant (RP) modeling enabled studying the effect of improving water quality at the drains on the Rosetta branch water quality. The RP modeling showed that applying the proposed solutions would significantly improve water quality at the Rosetta branch.展开更多
The El-Rahawy drain, is the major source of pollution along the Rosetta branch, receives primary treated wastewater from the Abu-Rawash Wastewater Treatment Plant (WWTP). The main purpose of this research was to manag...The El-Rahawy drain, is the major source of pollution along the Rosetta branch, receives primary treated wastewater from the Abu-Rawash Wastewater Treatment Plant (WWTP). The main purpose of this research was to manage water quality at the Rosetta branch by improving effluent water quality at the Abu-Rawash WWTP. This research involved attempting to determine the optimal dose of aluminum chloride (AlCl3) to reach an acceptable treatment at the Abu-Rawash WWTP. A dose of 2.0 mg of AlCl3 for each liter of wastewater was selected. Another approach involves discharging flow from Al-Buhairi Water Canal to the El-Rahawy drain in order to increase the dissolved oxygen (DO) concentration and reduce pollutant concentrations at the El-Rahawy drain. Applying these approaches will significantly improve water quality at the El-Rahawy drain. The river pollutant (RP) modeling was also used to study the effect of improving water quality at the El-Rahawy drain on the Rosetta branch water quality. The RP modeling showed that applying the proposed solutions will significantly improve water quality at the Rosetta branch.展开更多
The Tala drain is the second major source of pollution along the Rosetta branch. The Tala drain receives discharge from dairy industry and agricultural drainage, as well as untreated domestic wastewater. This research...The Tala drain is the second major source of pollution along the Rosetta branch. The Tala drain receives discharge from dairy industry and agricultural drainage, as well as untreated domestic wastewater. This research involved attempting to improve water quality at the Rosetta branch by improving water quality at the Tala drain. Water quality at the Tala drain will be improved through improving effluent water quality from the dairy industry using aluminum chloride (AlCl3) as a coagulant, with injections of carbon dioxide (CO2), and constructing a new WWTP. Results indicated that the optimum aluminum chloride dosage was 225 mg/L at a pH value of 6.15. The estimated treatment cost of 1.0 m3 of dairy wastewater is $0.0425 per day. The river pollutant (RP) modeling was also used to study the effect of improving water quality at the Tala drain in the Rosetta branch water quality. The RP modeling showed that applying the proposed solutions will significantly improve water quality at the Tala drain and at the Rosetta branch.展开更多
The aim of the present study is to assess the water quality along the Rosetta branch of the Nile River, Egypt. The study area extends from upstream of the EI-Rahawy drain to the end of the branch. The correlation matr...The aim of the present study is to assess the water quality along the Rosetta branch of the Nile River, Egypt. The study area extends from upstream of the EI-Rahawy drain to the end of the branch. The correlation matrix was performed to help identify the nature of correlations between the different parameters. The WQI (water quality index) was calculated seasonally at different points along the Rosetta branch to provide a simple indicator of water quality at these points. The results of WQI calculations showed that the fecal coliform is the main cause of poor water quality along the Rosetta branch. A statistical analysis was also performed using a two-way ANOVA (analysis of variance) to identify the significant sources of water pollution and to determine the impact of the parameters on a mass loading. A significant difference was observed between the impacts of the pollution sources on the water quality. Also, a significant difference was observed between the impacts of each parameter in the mass loading. The results showed that the E1-Rahawy, Tala and Sabal drains are the major sources for water quality degradation along the Rosetta branch and that the effect of the EI-Tahrir and the Zawyet El-Baher drains on the water quality is not significant.展开更多
【目的】为提高重组人ADAM(A Disintegrin And Metalloproteinase)15去整合素结构域蛋白(rhADAM15)的表达水平。【方法】在详尽分析rhADAM15的cDNA和GST(谷胱甘肽-S-转移酶)-ADAM15结构的基础上,选择表达宿主菌并对表达质粒进行改造。...【目的】为提高重组人ADAM(A Disintegrin And Metalloproteinase)15去整合素结构域蛋白(rhADAM15)的表达水平。【方法】在详尽分析rhADAM15的cDNA和GST(谷胱甘肽-S-转移酶)-ADAM15结构的基础上,选择表达宿主菌并对表达质粒进行改造。【结果】(1)选择能为大肠杆菌稀有密码子提供额外tRNA的Escherichia coli.Rosetta(DE3)作为宿主菌,将质粒pGEX-ADAM15转化于其中在最佳诱导表达条件下获得298mg/L融合蛋白GST-ADAM15;(2)采用PCR体外定点突变技术将目标蛋白编码区稀有密码子GGA(Gly425)替换为GGC,使融合蛋白表达水平提高9.4%;(3)通过消除凝血酶识别序列附近的Pro-Glu-Phe残基,提高凝血酶酶切效率,使rhADAM15产量提高了35.7%;(4)在GGA替换为GGC基础上切除"Pro-Glu-Phe"残基,使rhADAM15产量提高到68mg/L,比分别切除"Pro-Glu-Phe"残基、GGA替换为GGC和野生型提高了19.2%、51.1%和61.9%。【结论】这一结果表明,在充分认识目标蛋白特性的基础上定向选择表达宿主并改造表达质粒能实现外源蛋白高水平表达。展开更多
文摘Simulation models are tools that can be used to explore, for example, effects of cultural practices on soil erosion and irrigation on crop yield. However, often these models require many soil related input data of which the saturated hydraulic conductivity (Ks) is one of the most important ones. These data are usually not available and experimental determination is both expensive and time consuming. Therefore, pedotransfer functions are often used, which make use of simple and often readily available soil information to calculate required input values for models, such as soil hydraulic values. Our objective was to test the Rosetta pedotransfer function to calculate Ks. Research was conducted in a 64-ha field near Lamesa, Texas, USA. Field measurements of soil texture and bulk density, and laboratory measurements of soil water retention at field capacity (–33 kPa) and permanent wilting point (–1500 kPa), were taken to implement Rosetta. Calculated values of Ks were then compared to measured Ks on undisturbed soil samples. Results showed that Rosetta could be used to obtain values of Ks for a field with different textures. The Root Mean Square Difference (RMSD) of Ks at 0.15 m soil depth was 7.81 × 10–7 m·s–1. Further, for a given soil texture the variability, from 2.30 × 10–7 to 2.66 × 10–6 m·s-1, of measured Ks was larger than the corresponding RMSD. We conclude that Rosetta is a tool that can be used to calculate Ks in the absence of measured values, for this particular soil. Level H5 of Rosetta yielded the best results when using the measured input data and thus calculated values of Ks can be used as input in simulation models.
文摘Water quality of Rosetta Branch may be changed by several factors in the last decades as a result of anthropogenic activities. So, it’s important to study the physicochemical characteristics of both water and sediment in the Rosetta Branch. Two identified sources are the main origin of most pollutants in this branch, namely: El-Rahawy drain and industrial activities in Kafr El-Zayat city. From the data of water quality index (WQI) based on six important parameters (pH, T °C, DO, BOD, COD and TP), it indicates that site 2 (from Kom Hamada to Edfina) is more polluted than the other two sites (from El-Qanater El-Khairia to Kom Hamada and from Edfina to Rosetta). The concentrations of heavy metals increase in sites that are more affected by drainage water from different drains. Great efforts are needed and wastewater must be treated before draining it into the River Nile water.
文摘The El-Rahawy and the Tala drains are the major sources of pollution along the Rosetta branch. The El-Rahawy drain receives primary treated wastewater from the Abu-Rawash Wastewater Treatment Plant (WWTP), while the Tala drain receives discharge from dairy industry and agricultural drainage, as well as domestic wastewater. This research involved attempting to study the effect of improving water quality on the El-Rahawy and the Tala drains in the Rosetta branch water quality. Water quality at the El-Rahawy drain is expected to improve after discharging water from the Al-Buhairi Water Canal to the El-Rahawy drain and improving effluent water quality at the Abu-Rawash WWTP. Water quality at the Tala drain is expected to improve after constructing a new WWTP and improving effluent water quality at the dairy industry. The river pollutant (RP) modeling enabled studying the effect of improving water quality at the drains on the Rosetta branch water quality. The RP modeling showed that applying the proposed solutions would significantly improve water quality at the Rosetta branch.
文摘The El-Rahawy drain, is the major source of pollution along the Rosetta branch, receives primary treated wastewater from the Abu-Rawash Wastewater Treatment Plant (WWTP). The main purpose of this research was to manage water quality at the Rosetta branch by improving effluent water quality at the Abu-Rawash WWTP. This research involved attempting to determine the optimal dose of aluminum chloride (AlCl3) to reach an acceptable treatment at the Abu-Rawash WWTP. A dose of 2.0 mg of AlCl3 for each liter of wastewater was selected. Another approach involves discharging flow from Al-Buhairi Water Canal to the El-Rahawy drain in order to increase the dissolved oxygen (DO) concentration and reduce pollutant concentrations at the El-Rahawy drain. Applying these approaches will significantly improve water quality at the El-Rahawy drain. The river pollutant (RP) modeling was also used to study the effect of improving water quality at the El-Rahawy drain on the Rosetta branch water quality. The RP modeling showed that applying the proposed solutions will significantly improve water quality at the Rosetta branch.
文摘The Tala drain is the second major source of pollution along the Rosetta branch. The Tala drain receives discharge from dairy industry and agricultural drainage, as well as untreated domestic wastewater. This research involved attempting to improve water quality at the Rosetta branch by improving water quality at the Tala drain. Water quality at the Tala drain will be improved through improving effluent water quality from the dairy industry using aluminum chloride (AlCl3) as a coagulant, with injections of carbon dioxide (CO2), and constructing a new WWTP. Results indicated that the optimum aluminum chloride dosage was 225 mg/L at a pH value of 6.15. The estimated treatment cost of 1.0 m3 of dairy wastewater is $0.0425 per day. The river pollutant (RP) modeling was also used to study the effect of improving water quality at the Tala drain in the Rosetta branch water quality. The RP modeling showed that applying the proposed solutions will significantly improve water quality at the Tala drain and at the Rosetta branch.
文摘The aim of the present study is to assess the water quality along the Rosetta branch of the Nile River, Egypt. The study area extends from upstream of the EI-Rahawy drain to the end of the branch. The correlation matrix was performed to help identify the nature of correlations between the different parameters. The WQI (water quality index) was calculated seasonally at different points along the Rosetta branch to provide a simple indicator of water quality at these points. The results of WQI calculations showed that the fecal coliform is the main cause of poor water quality along the Rosetta branch. A statistical analysis was also performed using a two-way ANOVA (analysis of variance) to identify the significant sources of water pollution and to determine the impact of the parameters on a mass loading. A significant difference was observed between the impacts of the pollution sources on the water quality. Also, a significant difference was observed between the impacts of each parameter in the mass loading. The results showed that the E1-Rahawy, Tala and Sabal drains are the major sources for water quality degradation along the Rosetta branch and that the effect of the EI-Tahrir and the Zawyet El-Baher drains on the water quality is not significant.
文摘【目的】为提高重组人ADAM(A Disintegrin And Metalloproteinase)15去整合素结构域蛋白(rhADAM15)的表达水平。【方法】在详尽分析rhADAM15的cDNA和GST(谷胱甘肽-S-转移酶)-ADAM15结构的基础上,选择表达宿主菌并对表达质粒进行改造。【结果】(1)选择能为大肠杆菌稀有密码子提供额外tRNA的Escherichia coli.Rosetta(DE3)作为宿主菌,将质粒pGEX-ADAM15转化于其中在最佳诱导表达条件下获得298mg/L融合蛋白GST-ADAM15;(2)采用PCR体外定点突变技术将目标蛋白编码区稀有密码子GGA(Gly425)替换为GGC,使融合蛋白表达水平提高9.4%;(3)通过消除凝血酶识别序列附近的Pro-Glu-Phe残基,提高凝血酶酶切效率,使rhADAM15产量提高了35.7%;(4)在GGA替换为GGC基础上切除"Pro-Glu-Phe"残基,使rhADAM15产量提高到68mg/L,比分别切除"Pro-Glu-Phe"残基、GGA替换为GGC和野生型提高了19.2%、51.1%和61.9%。【结论】这一结果表明,在充分认识目标蛋白特性的基础上定向选择表达宿主并改造表达质粒能实现外源蛋白高水平表达。