期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Rota-Baxter q-3-李代数 被引量:1
1
作者 林丽鑫 《吉林大学学报(理学版)》 CAS 北大核心 2020年第5期1066-1072,共7页
定义q-3-李代数的权为λ的Rota-Baxter算子,给出P为q-3-李代数权为λ的Rota-Baxter算子的充要条件,并通过Rota-Baxter李代数、Rota-Baxter结合代数、Rota-Baxter左对称代数和Rota-Baxter群代数等实现了Rota-Baxter q-3-李代数.
关键词 q-3-李代数 rota-baxter q-3-李代数 rota-baxter算子
下载PDF
q-Deformations of 3-Lie Algebras 被引量:5
2
作者 Ruipu Bai Lixin Lin +1 位作者 Yan Zhang Chuangchuang Kang 《Algebra Colloquium》 SCIE CSCD 2017年第3期519-540,共22页
q-Deformations of 3-Lie algebras and representations of q-3-Lie algebras are discussed. A q-3-Lie algebra (A, [, ,]q, [, ,]'q, Ja), where q ∈ F and q ≠ 0, is a vector space A over a field F with 3-cry linear mult... q-Deformations of 3-Lie algebras and representations of q-3-Lie algebras are discussed. A q-3-Lie algebra (A, [, ,]q, [, ,]'q, Ja), where q ∈ F and q ≠ 0, is a vector space A over a field F with 3-cry linear multiplications [,, ]q and [,, ]'q from A 3 to A, and a map Jq : A 5→ F satisfying the q-Jacobi identity Jq(x1, x2, x3, x4, x5)[x1, x2, [x3, x4, x5]q]'q = Jq(x4, x5, x1, x2, x3)[x4, x5, [x1, x2, x3]q]'q for all x1 ∈ A. If the multiplications satisfy that [,,]q = [,,]'q and [,,]q is skew-symmetry, then (A, [,,]q, Jq) is called a type (I)-q-3- Lie algebra. From q-Lie algebras, group algebras and commutative associative algebras, q-3-Lie algebras and type (I)-q-3-Lie algebras are constructed. Also, the non-trivial one- dimensional central extension of q-3-Lie algebras is investigated, and new q-3-Lie algebras (DerqC[x,x-1], [, ,]q, [, ,]'q, Jq), and (Derδq C[x,x-1], [, ,]q, [,,]'q, Jq) are obtained. 展开更多
关键词 q-3-lie algebra q-DEFORMATION q-Jacobi identity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部