期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Assessing cutter-rock interaction during TBM tunnelling in granite:Large-scale standing rotary cutting tests and 3D DEM simulations
1
作者 Xin Huang Miaoyuan Tang +4 位作者 Shuaifeng Wang Yixin Zhai Qianwei Zhuang Chi Zhang Qinghua Lei 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3595-3615,共21页
The widespread utilisation of tunnel boring machines(TBMs)in underground construction engineering requires a detailed investigation of the cutter-rock interaction.In this paper,we conduct a series of largescale standi... The widespread utilisation of tunnel boring machines(TBMs)in underground construction engineering requires a detailed investigation of the cutter-rock interaction.In this paper,we conduct a series of largescale standing rotary cutting tests on granite in conjunction with high-fidelity numerical simulations based on a particle-type discrete element method(DEM)to explore the effects of key cutting parameters on the TBM cutter performance and the distribution of cutter-rock contact stresses.The assessment results of cutter performance obtained from the cutting tests and numerical simulations reveal similar dependencies on the key cutting parameters.More specifically,the normal and rolling forces exhibit a positive correlation with penetration but are slightly influenced by the cutting radius.In contrast,the side force decreases as the cutting radius increases.Additionally,the side force shows a positive relationship with the penetration for smaller cutting radii but tends to become negative as the cutting radius increases.The cutter's relative effectiveness in rock breaking is significantly impacted by the penetration but shows little dependency on the cutting radius.Consequently,an optimal penetration is identified,leading to a low boreability index and specific energy.A combined Hertz-Weibull function is developed to fit the cutter-rock contact stress distribution obtained in DEM simulations,whereby an improved CSM(Colorado School of Mines)model is proposed by replacing the original monotonic cutting force distribution with this combined Hertz-Weibull model.The proposed model outperforms the original CSM model as demonstrated by a comparison of the estimated cutting forces with those from the tests/simulations.The findings from this work that advance our understanding of TBM cutter performance have important implications for improving the efficiency and reliability of TBM tunnelling in granite. 展开更多
关键词 Large-scale standing rotary cutting test Discrete element method(DEM)simulation Cutter-rock interaction Improved CSM(Colorado School of Mines) model cutting force
下载PDF
Longhole waterjet rotary cutting for in-seam cross panel methane drainage 被引量:5
2
作者 LU Tingkan YU Hong DAI Yaohui 《Mining Science and Technology》 EI CAS 2010年第3期378-383,共6页
In order to improve the efficiency of gas drainage before and during longwall extraction,a waterjet rotary cutting system has been developed for in-seam cross panel methane drainage.The purpose of the water rotary cut... In order to improve the efficiency of gas drainage before and during longwall extraction,a waterjet rotary cutting system has been developed for in-seam cross panel methane drainage.The purpose of the water rotary cutting system developed was to create artificial fractures along the gas drainage boreholes.During the design of the system,it was perceived that the nozzle geometry is one of the key factors,affecting cutting capacity.Therefore,we studied the structural and geometric parameters of the nozzle and optimized its performance during laboratory tests and numerical simulation.Underground trials conducted in a coal mine,indicate that production of gas drainage before and after cutting significantly increased by up to three times.The advantages of waterjet assisted gas drainage method has been identified as:1) increasing gas drainage efficiency,2) a possible development of a gas drainage fractured network within coal seams associated with panel extraction,and 3) reducing the risk of exceeding gas limits during longwalling. 展开更多
关键词 gas drainage waterjet rotary cutting longhole LONGWALL
下载PDF
Side force formation mechanism and change law of TBM center cutter 被引量:6
3
作者 夏毅敏 田彦朝 +1 位作者 谭青 侯禹蒙 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第5期1115-1122,共8页
The center cutter of a hard rock tunnel boring machine(TBM) is installed on the cutterhead at a small radius and thus bears complex side force.Given this fact,the formation mechanism and change law of the side force s... The center cutter of a hard rock tunnel boring machine(TBM) is installed on the cutterhead at a small radius and thus bears complex side force.Given this fact,the formation mechanism and change law of the side force suffered by the center cutter were studied.Based on the rock shear failure criterion in combination with the lateral rolling width,a model for predicting the average side force was set up.Besides,a numerical analysis model of the rock fragmentation of the center cutter was established,and the instantaneous load changing features were investigated.Results shows that the inner side of the center cutter can form lateral rolling annulus in rock during the rotary cutting process.The smaller the installation radius is,the greater the cutter side force will be.In a working condition,the side force of the innermost center cutter is 11.66 k N,while it decreases sharply when installation radius increases.Variation tends to be gentle when installation radius is larger than 500 mm,and the side force of the outermost center cutter is reduced to 0.74 k N. 展开更多
关键词 tunnel boring machine center cutter rotary cutting installation radius side force
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部