Rotary kiln process for iron ore oxide pellet production is hard to detect and control.Construction of one-dimensional model of temperature field in rotary kiln was described.And the results lay a solid foundation for...Rotary kiln process for iron ore oxide pellet production is hard to detect and control.Construction of one-dimensional model of temperature field in rotary kiln was described.And the results lay a solid foundation for online control.Establishment of kiln process control expert system was presented,with maximum temperature of pellet and gas temperature at the feed end as control cores,and interval estimate as control strategy.Software was developed and put into application in a pellet plant.The results show that control guidance of this system is accurate and effective.After production application for nearly one year,the compressive strength and first grade rate of pellet are increased by 86 N and 2.54%,respectively,while FeO content is 0.05% lowered.This system can reveal detailed information of real time kiln process,and provide a powerful tool for online control of pellet production.展开更多
To solve the problem of the low added value Zn-containing rotary hearth furnace(RHF)dust,two deep eutectic solvents(DESs)were employed,such as choline chloride-urea(ChCl-urea)and choline chloride-oxalic acid dihydrate...To solve the problem of the low added value Zn-containing rotary hearth furnace(RHF)dust,two deep eutectic solvents(DESs)were employed,such as choline chloride-urea(ChCl-urea)and choline chloride-oxalic acid dihydrate(CC-OA)solvent and Zn-containing RHF dust(water-washed)as the research target.Then,we prepared ZnO nanoparticles using two DESs or their combination,namely,ChCl-urea(Method A),CC-OA(Method B),first CC-OA and then ChCl-urea(Method B-A)and first ChCl-urea and then CCOA(Method A-B),respectively.The effects of these methods on the properties of as-obtained precursors and ZnO nanoparticles were investigated in detail.The results indicated that the precursor obtained by Method A was Zn_(4)CO_(3)(OH)_(6)·H_(2)O,and those by Methods B,B-A,and A-B were all ZnC_(2)O_(4)·2H_(2)O.Moreover,the decomposition steps of the last three methods were similar.The ZnO contents of 95.486%,99.768%,99.733%,and 99.76%were obtained by Methods A,B,B-A,and A-B,respectively.Methods A,B,and B-A led to the formation of spherical and agglomerated ZnO nanoparticles with normal size distributions,where Method B showed the best distribution with an average diameter 25 nm.The ZnO nanoparticles obtained by the Method A-B did not possess good properties.展开更多
Traditionally a rotary forging process is a kind of metal forming method where a conic upper die, whose axis is deviated an angle from the axis of machine, forges a billet continuously and partially to finish the whol...Traditionally a rotary forging process is a kind of metal forming method where a conic upper die, whose axis is deviated an angle from the axis of machine, forges a billet continuously and partially to finish the whole deformation. For the rotary forging process simulation, more researches were focused on simulating the simple stage forming process with axisymmetric part geometry. Whereas in this paper, the upper die is not cone-shaped, and the billet is non-axisymmetric. So the movement of the punch is much more complicated than ever. The 3D FEM simulation models for the preforming & final forming processes are set up aider carefully studying the complicated movement pattern. Deform-3D is used to simulate the material flow, and the boundary nodal resisting forces calculated by the final stage process simulation is used to analyze the final forming die strength. The CAE analysis of the die shows that the design of the final forming die is not reasonable with lower pre-stress which is easy to crack at the critical corners. An optimum die design is also provided with higher pre-stress, and verified by CAE analysis.展开更多
The experimental results of processing the solutions with trace suspended micro particles by a dynamic rotary vane filter press at production site are presented in this paper. Furthermore t...The experimental results of processing the solutions with trace suspended micro particles by a dynamic rotary vane filter press at production site are presented in this paper. Furthermore the effects of the conditions in the productive operation and the method of processing are summarized.展开更多
Catalytic direct decomposition of NO by perovskite-type catalysts has attracted much attention for the various possible components and the unique structure. LaCoO_3 nanoparticles were precipitated on a-Al_2O_3 micro p...Catalytic direct decomposition of NO by perovskite-type catalysts has attracted much attention for the various possible components and the unique structure. LaCoO_3 nanoparticles were precipitated on a-Al_2O_3 micro powders by rotary chemical vapor deposition(rotary CVD) and its catalytic performance for the decomposition of NO was investigated. LaCoO_3 nano-particles with 100 nm in average diameter and 1.5% in mass were uniformly dispersed on a-Al_2O_3 powder. The conversion of NO increased with increasing temperature from 400 to 950 ℃, and reached 28.7% at 950 ℃. The gas velocity of transformed NO on LaCoO_3 nano-particles catalyst per mass unit was 7.7 mL/(g min), showing a good catalytic activity over the calculated results of pure catalysts. After five times of aging performance experiments, the NO conversion kept the same value, showing a good aging performance and thermal stability.展开更多
The rotary motion deblurring is an inevitable procedure when the imaging seeker is mounted in the rotating missiles.Traditional rotary motion deblurring methods suffer from ringing artifacts and noise,especially for l...The rotary motion deblurring is an inevitable procedure when the imaging seeker is mounted in the rotating missiles.Traditional rotary motion deblurring methods suffer from ringing artifacts and noise,especially for large blur extents.To solve the above problems,we propose a progressive rotary motion deblurring framework consisting of a coarse deblurring stage and a refinement stage.In the first stage,we design an adaptive blur extents factor(BE factor)to balance noise suppression and details reconstruction.And a novel deconvolution model is proposed based on BE factor.In the second stage,a triplescale deformable module CNN(TDM-CNN)is designed to reduce the ringing artifacts,which can exploit the 2D information of an image and adaptively adjust spatial sampling locations.To establish a standard evaluation benchmark,a real-world rotary motion blur dataset is proposed and released,which includes rotary blurred images and corresponding ground truth images with different blur angles.Experimental results demonstrate that the proposed method outperforms the state-of-the-art models on synthetic and real-world rotary motion blur datasets.The code and dataset are available at https://github.com/JinhuiQin/RotaryDeblurring.展开更多
The widespread utilisation of tunnel boring machines(TBMs)in underground construction engineering requires a detailed investigation of the cutter-rock interaction.In this paper,we conduct a series of largescale standi...The widespread utilisation of tunnel boring machines(TBMs)in underground construction engineering requires a detailed investigation of the cutter-rock interaction.In this paper,we conduct a series of largescale standing rotary cutting tests on granite in conjunction with high-fidelity numerical simulations based on a particle-type discrete element method(DEM)to explore the effects of key cutting parameters on the TBM cutter performance and the distribution of cutter-rock contact stresses.The assessment results of cutter performance obtained from the cutting tests and numerical simulations reveal similar dependencies on the key cutting parameters.More specifically,the normal and rolling forces exhibit a positive correlation with penetration but are slightly influenced by the cutting radius.In contrast,the side force decreases as the cutting radius increases.Additionally,the side force shows a positive relationship with the penetration for smaller cutting radii but tends to become negative as the cutting radius increases.The cutter's relative effectiveness in rock breaking is significantly impacted by the penetration but shows little dependency on the cutting radius.Consequently,an optimal penetration is identified,leading to a low boreability index and specific energy.A combined Hertz-Weibull function is developed to fit the cutter-rock contact stress distribution obtained in DEM simulations,whereby an improved CSM(Colorado School of Mines)model is proposed by replacing the original monotonic cutting force distribution with this combined Hertz-Weibull model.The proposed model outperforms the original CSM model as demonstrated by a comparison of the estimated cutting forces with those from the tests/simulations.The findings from this work that advance our understanding of TBM cutter performance have important implications for improving the efficiency and reliability of TBM tunnelling in granite.展开更多
The Rotary Inverted Pendulum(RIP)is a widely used underactuated mechanical system in various applications such as bipedal robots and skyscraper stabilization where attitude control presents a significant challenge.Des...The Rotary Inverted Pendulum(RIP)is a widely used underactuated mechanical system in various applications such as bipedal robots and skyscraper stabilization where attitude control presents a significant challenge.Despite the implementation of various control strategies to maintain equilibrium,optimally tuning control gains to effectively mitigate uncertain nonlinearities in system dynamics remains elusive.Existing methods frequently rely on extensive experimental data or the designer’s expertise,presenting a notable drawback.This paper proposes a novel tracking control approach for RIP,utilizing a Linear Quadratic Regulator(LQR)in combination with a reduced-order observer.Initially,the RIP system is mathematically modeled using the Newton-Euler-Lagrange method.Subsequently,a composite controller is devised that integrates an LQR for generating nominal control signals and a reduced-order observer for reconstructing unmeasured states.This approach enhances the controller’s robustness by eliminating differential terms from the observer,thereby attenuating unknown disturbances.Thorough numerical simulations and experimental evaluations demonstrate the system’s capability to maintain balance below50Hz and achieve precise tracking below1.4 rad,validating the effectiveness of the proposed control scheme.展开更多
The North China Plain and the agricultural region are crossed by the Shanxi-Beijing natural gas pipeline.Resi-dents in the area use rototillers for planting and harvesting;however,the depth of the rototillers into the...The North China Plain and the agricultural region are crossed by the Shanxi-Beijing natural gas pipeline.Resi-dents in the area use rototillers for planting and harvesting;however,the depth of the rototillers into the ground is greater than the depth of the pipeline,posing a significant threat to the safe operation of the pipeline.Therefore,it is of great significance to study the dynamic response of rotary tillers impacting pipelines to ensure the safe opera-tion of pipelines.This article focuses on the Shanxi-Beijing natural gas pipeline,utilizingfinite element simulation software to establish afinite element model for the interaction among the machinery,pipeline,and soil,and ana-lyzing the dynamic response of the pipeline.At the same time,a decision tree model is introduced to classify the damage of pipelines under different working conditions,and the boundary value and importance of each influen-cing factor on pipeline damage are derived.Considering the actual conditions in the hemp yam planting area,targeted management measures have been proposed to ensure the operational safety of the Shanxi-Beijing natural gas pipeline in this region.展开更多
In order to study the effects of the process parameters on springback and section deformation, a sensitivity analysis model was established based on the combination use of the multi-parameter sensitivity analysis meth...In order to study the effects of the process parameters on springback and section deformation, a sensitivity analysis model was established based on the combination use of the multi-parameter sensitivity analysis method and the springback/section deformation prediction finite element model, and by using this model the sensitivities of the springback and the section deformation to process parameters were analyzed and compared. The results show that the most sensitive process conditions for springback angle are the boost speed and the pressure of pressure die, and the most sensitive process condition for section deformation is the number of cores. When the clamp force, the boost speed and the pressure of pressure die are utilized to control section deformation, the effect of these process parameters on springback should be considered. When the process parameters are mainly used to control springback, the effect of these process parameters on the section deformation should be always considered.展开更多
The theoretical analysis of springback in rotary stretch bending process of L-section extrusion was studied. The models for characterizing the springback angle after unloading were established based on the stress and ...The theoretical analysis of springback in rotary stretch bending process of L-section extrusion was studied. The models for characterizing the springback angle after unloading were established based on the stress and strain distributions in the cross-section of the part. With the proposed model, analysis of the effect of pre-stretch force and post-stretch force on springback angle shows that springback decreases as the pre-stretch force or post-stretch force increases. Comparative study with experiments clearly demonstrates that the prediction of springback can resort to the current model without the loss of accuracy.展开更多
A rotary swaging machine was applied to fabricating pipe reduction for miniature inner grooved copper tube (MIGCT) heat pipes. Compared with conventional swaging method, the axial feed of the designed rotary swaging...A rotary swaging machine was applied to fabricating pipe reduction for miniature inner grooved copper tube (MIGCT) heat pipes. Compared with conventional swaging method, the axial feed of the designed rotary swaging machine was reached by a constant pushing force. The deformation of grooves in pipe reduced section during rotary swaging was analyzed. The shrinkage and extensibility of pipe reduction were measured and calculated. Furthermore, four aspects, including outer diameter, surface roughness, extensibility and processing time of pipe reduction, which were influenced by the pushing force, were considered. The results show that the tube wall thickness increases gradually along the z-axis at sinking section. However, the outer diameters, surface roughness and micro-cracks at reduced section tend to decrease along the z-axis. Besides, the effect of variation in the pushing force on the extensibility is limited while an increase in the pushing force results in a decrease of surface roughness. Therefore, a large pushing force within the limit is beneficial to pipe reduction manufacturing during rotary swaging process.展开更多
Aim To get the analytical for laminar viscous flow in the gap of two parallel rotating disks. Methods By estimating the order of magnitude of each term in the Navier-Stokes equations to drop small terms and achieve...Aim To get the analytical for laminar viscous flow in the gap of two parallel rotating disks. Methods By estimating the order of magnitude of each term in the Navier-Stokes equations to drop small terms and achieve the required simplified differential equations, and by integrating the equations to obtain the solution for theflow between two rotary disks. Results Parameters related to the laminar viscous flow in the gap between two parallel rotary disks, such as the velocity, the pressure, the flowrate, the force, the shearing stress, the torque and the power derived. Conclusion The result provides a theoretical basis and an effective method for the designs of the devices connected with the laminar viscous flow in the gap between two parallel rotary disks.展开更多
The effects of Nd addition on the mechanical properties and plastic deformability of AZ71 Mg alloys were investigated.0.5%-2.0%(mass fraction) Nd was added to AZ71 Mg alloys.The grain size and the amount of brittle ...The effects of Nd addition on the mechanical properties and plastic deformability of AZ71 Mg alloys were investigated.0.5%-2.0%(mass fraction) Nd was added to AZ71 Mg alloys.The grain size and the amount of brittle β-Mg17Al12 phase reduce with increasing the Nd addition,while nanosized AlxNdy precipitates form.In combination with 32% rotary forging and subsequent annealing,the grain size of Nd-added AZ71 Mg alloys reduces greatly from over 350 μm to below 30 μm.Both tensile strength and ductility increase with the Nd addition up to 1.0%.The addition of Nd beyond 1.0% leads to the aggregations of rod-shaped Al11Nd3 and blocky Al2 Nd precipitates,thereby deteriorating both strength and ductility.The 1.0% Nd-added AZ71 Mg alloy shows tensile strength up to 253 MPa and elongation of 10.7%.It is concluded that adding 1.0% Nd to AZ71 Mg alloy yields the optimum toughness,whether under as-cast or rotary forging and annealing conditions.展开更多
On the basis of understanding the principle of rotary triboelectrostatic separation, dynamic analysis of charged fly ash particles aimed at determining the key factors and separation experiments to improve decarboniza...On the basis of understanding the principle of rotary triboelectrostatic separation, dynamic analysis of charged fly ash particles aimed at determining the key factors and separation experiments to improve decarbonization efficiency had been carried out Variables of electrode plate voltage and corrected wind speed are the key factors which affect the decarbonization efficiency on the separation of fly ash, The results of separation experiments show that:(1) With the plate voltage increasing, the efficiency of decarbonization continuously rises and in its selected range, the optimal voltage level is 45 KV;(2) The corrected wind speed can impact the efficiency of decarbonization significantly: with the speed increasing, the efficiency of decarbonization shows a trend of first decline, then increase and decrease again, and in its selected range, the optimal speed is 2.0 m/s. This study is of significance for the improvement of rotary triboelectrostatic separation performance and its decarbonization separation efficiency.展开更多
Successfully developed an innovative process of direct reduction of cold bound pellets from iron ore concentrate with a coal based rotary kiln, in comparison with the traditional direct reduction of fired oxide pellet...Successfully developed an innovative process of direct reduction of cold bound pellets from iron ore concentrate with a coal based rotary kiln, in comparison with the traditional direct reduction of fired oxide pellets in coal based rotary kilns , possesses such advantages as: shorter flowsheet, lower capital investment, greater economic profit, good quality of direct reduced iron. The key technologies , such as the composite binder and corresponding feasible techniques were employed in practice. A mill utilizing this process and with an annual capacity of 50 thousand ton DRI has been put into operation.展开更多
A mathematical model was established to describe the direct reduction of pellets in a rotary hearth furnace (RHF). In the model, heat transfer, mass transfer, and gas-solid chemical reactions were taken into account...A mathematical model was established to describe the direct reduction of pellets in a rotary hearth furnace (RHF). In the model, heat transfer, mass transfer, and gas-solid chemical reactions were taken into account. The behaviors of iron metallization and dezincification were analyzed by the numerical method, which was validated by experimental data of the direct reduction of pellets in a Si-Mo furnace. The simulation results show that if the production targets of iron metallization and dezincification are up to 80% and 90%, respectively, the furnace temperature for high-temperature sections must be set higher than 1300~ C. Moreover, an undersupply of secondary air by 20% will lead to a decline in iron metallization rate of discharged pellets by 10% and a decrease in dezincing rate by 13%. In addition, if the residence time of pellets in the furnace is over 20 min, its further extension will hardly lead to an obvious increase in production indexes under the same furnace temperature curve.展开更多
In order to develop a practical postprocessor for 5-axis machine tool,the general equations of numerically controlled(NC) data for 5-axis configurations with non-orthogonal rotary axes were exactly expressed by the in...In order to develop a practical postprocessor for 5-axis machine tool,the general equations of numerically controlled(NC) data for 5-axis configurations with non-orthogonal rotary axes were exactly expressed by the inverse kinematics,and a windows-based postprocessor written with Visual Basic was developed according to the proposed algorithm.The developed postprocessor is a general system suitable for all kinds of 5-axis machines with orthogonal and non-orthogonal rotary axes.Through implementation of the developed postprocessor and verification by a cutting simulation and machining experiment,the effectiveness of the proposed algorithm is confirmed.Compatibility is improved by allowing exchange of data formats such as rotational total center position(RTCP) controlled NC data,vector post NC data,and program object file(POF) cutter location(CL) data,and convenience is increased by adding the function of work-piece origin offset.Consequently,a practical post-processor for 5-axis machining is developed.展开更多
Based on the Fourier transform, a new shape descriptor was proposed to represent the flame image. By employing the shape descriptor as the input, the flame image recognition was studied by the methods of the artificia...Based on the Fourier transform, a new shape descriptor was proposed to represent the flame image. By employing the shape descriptor as the input, the flame image recognition was studied by the methods of the artificial neural network(ANN) and the support vector machine(SVM) respectively. And the recognition experiments were carried out by using flame image data sampled from an alumina rotary kiln to evaluate their effectiveness. The results show that the two recognition methods can achieve good results, which verify the effectiveness of the shape descriptor. The highest recognition rate is 88.83% for SVM and 87.38% for ANN, which means that the performance of the SVM is better than that of the ANN.展开更多
The important parameters to describe waves are their amplitude and length.In order to make it easier to improve wave amplitude and facilitate wave experiment,a simple push-type wave generating method using digital rot...The important parameters to describe waves are their amplitude and length.In order to make it easier to improve wave amplitude and facilitate wave experiment,a simple push-type wave generating method using digital rotary valve control was proposed and different wave amplitudes were generated by the new method.After the mathematical model of the new method had been established,numerical analysis based on the linear wave theory was carried out by means of Matlab/Simulink software tools,and experiments were conducted on the push-type wave maker to ascertain the validity of the established model and the numerical simulation results.It shows that both experimental and theoretical results agree relatively well,and the plate motion frequency and amplitude of the push-type wave maker can be continuously adjusted and the various required regular waves can be obtained.Although the wave amplitude and length descends with the increasing of working frequency,the wave amplitude can be improved conveniently by setting the axial opening width of the valve and the oil supply pressure of system.The wave length remains unchanged with the axial opening width and the oil supply pressure change.The research indicates that different regular waves can be easily generated by the new method and the wave amplitude can be further improved in a certain plate motion frequency range.展开更多
基金Project(NCET-05-0630) supported by Program for New Century Excellent Talents in University of China
文摘Rotary kiln process for iron ore oxide pellet production is hard to detect and control.Construction of one-dimensional model of temperature field in rotary kiln was described.And the results lay a solid foundation for online control.Establishment of kiln process control expert system was presented,with maximum temperature of pellet and gas temperature at the feed end as control cores,and interval estimate as control strategy.Software was developed and put into application in a pellet plant.The results show that control guidance of this system is accurate and effective.After production application for nearly one year,the compressive strength and first grade rate of pellet are increased by 86 N and 2.54%,respectively,while FeO content is 0.05% lowered.This system can reveal detailed information of real time kiln process,and provide a powerful tool for online control of pellet production.
基金Fund by Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX20_3134)
文摘To solve the problem of the low added value Zn-containing rotary hearth furnace(RHF)dust,two deep eutectic solvents(DESs)were employed,such as choline chloride-urea(ChCl-urea)and choline chloride-oxalic acid dihydrate(CC-OA)solvent and Zn-containing RHF dust(water-washed)as the research target.Then,we prepared ZnO nanoparticles using two DESs or their combination,namely,ChCl-urea(Method A),CC-OA(Method B),first CC-OA and then ChCl-urea(Method B-A)and first ChCl-urea and then CCOA(Method A-B),respectively.The effects of these methods on the properties of as-obtained precursors and ZnO nanoparticles were investigated in detail.The results indicated that the precursor obtained by Method A was Zn_(4)CO_(3)(OH)_(6)·H_(2)O,and those by Methods B,B-A,and A-B were all ZnC_(2)O_(4)·2H_(2)O.Moreover,the decomposition steps of the last three methods were similar.The ZnO contents of 95.486%,99.768%,99.733%,and 99.76%were obtained by Methods A,B,B-A,and A-B,respectively.Methods A,B,and B-A led to the formation of spherical and agglomerated ZnO nanoparticles with normal size distributions,where Method B showed the best distribution with an average diameter 25 nm.The ZnO nanoparticles obtained by the Method A-B did not possess good properties.
文摘Traditionally a rotary forging process is a kind of metal forming method where a conic upper die, whose axis is deviated an angle from the axis of machine, forges a billet continuously and partially to finish the whole deformation. For the rotary forging process simulation, more researches were focused on simulating the simple stage forming process with axisymmetric part geometry. Whereas in this paper, the upper die is not cone-shaped, and the billet is non-axisymmetric. So the movement of the punch is much more complicated than ever. The 3D FEM simulation models for the preforming & final forming processes are set up aider carefully studying the complicated movement pattern. Deform-3D is used to simulate the material flow, and the boundary nodal resisting forces calculated by the final stage process simulation is used to analyze the final forming die strength. The CAE analysis of the die shows that the design of the final forming die is not reasonable with lower pre-stress which is easy to crack at the critical corners. An optimum die design is also provided with higher pre-stress, and verified by CAE analysis.
文摘The experimental results of processing the solutions with trace suspended micro particles by a dynamic rotary vane filter press at production site are presented in this paper. Furthermore the effects of the conditions in the productive operation and the method of processing are summarized.
基金Funded by the National Natural Science Foundation of China(Nos.51372188 and 51521001)the 111 Project(B13035)+3 种基金the International Science&Technology Cooperation Program of China(2014DFA53090)the Natural Science Foundation of Hubei Province,China(2016CFA006)the National Key Research and Development Program of China(2017YFB0310400)the Fundamental Research Funds for the Central Universities(WUT:2017II43GX,2017III032)
文摘Catalytic direct decomposition of NO by perovskite-type catalysts has attracted much attention for the various possible components and the unique structure. LaCoO_3 nanoparticles were precipitated on a-Al_2O_3 micro powders by rotary chemical vapor deposition(rotary CVD) and its catalytic performance for the decomposition of NO was investigated. LaCoO_3 nano-particles with 100 nm in average diameter and 1.5% in mass were uniformly dispersed on a-Al_2O_3 powder. The conversion of NO increased with increasing temperature from 400 to 950 ℃, and reached 28.7% at 950 ℃. The gas velocity of transformed NO on LaCoO_3 nano-particles catalyst per mass unit was 7.7 mL/(g min), showing a good catalytic activity over the calculated results of pure catalysts. After five times of aging performance experiments, the NO conversion kept the same value, showing a good aging performance and thermal stability.
基金the National Natural Science Foundation of China under Grant 62075169,Grant 62003247,and Grant 62061160370the Hubei Province Key Research and Development Program under Grant 2021BBA235the Zhuhai Basic and Applied Basic Research Foundation under Grant ZH22017003200010PWC.
文摘The rotary motion deblurring is an inevitable procedure when the imaging seeker is mounted in the rotating missiles.Traditional rotary motion deblurring methods suffer from ringing artifacts and noise,especially for large blur extents.To solve the above problems,we propose a progressive rotary motion deblurring framework consisting of a coarse deblurring stage and a refinement stage.In the first stage,we design an adaptive blur extents factor(BE factor)to balance noise suppression and details reconstruction.And a novel deconvolution model is proposed based on BE factor.In the second stage,a triplescale deformable module CNN(TDM-CNN)is designed to reduce the ringing artifacts,which can exploit the 2D information of an image and adaptively adjust spatial sampling locations.To establish a standard evaluation benchmark,a real-world rotary motion blur dataset is proposed and released,which includes rotary blurred images and corresponding ground truth images with different blur angles.Experimental results demonstrate that the proposed method outperforms the state-of-the-art models on synthetic and real-world rotary motion blur datasets.The code and dataset are available at https://github.com/JinhuiQin/RotaryDeblurring.
基金supported by the National Natural Science Foundation of China(Grant Nos.52278407 and 52378407)the China Postdoctoral Science Foundation(Grant No.2023M732670)the support by the Postdoctoral Fellowship Program of China Postdoctoral Science Foundation.
文摘The widespread utilisation of tunnel boring machines(TBMs)in underground construction engineering requires a detailed investigation of the cutter-rock interaction.In this paper,we conduct a series of largescale standing rotary cutting tests on granite in conjunction with high-fidelity numerical simulations based on a particle-type discrete element method(DEM)to explore the effects of key cutting parameters on the TBM cutter performance and the distribution of cutter-rock contact stresses.The assessment results of cutter performance obtained from the cutting tests and numerical simulations reveal similar dependencies on the key cutting parameters.More specifically,the normal and rolling forces exhibit a positive correlation with penetration but are slightly influenced by the cutting radius.In contrast,the side force decreases as the cutting radius increases.Additionally,the side force shows a positive relationship with the penetration for smaller cutting radii but tends to become negative as the cutting radius increases.The cutter's relative effectiveness in rock breaking is significantly impacted by the penetration but shows little dependency on the cutting radius.Consequently,an optimal penetration is identified,leading to a low boreability index and specific energy.A combined Hertz-Weibull function is developed to fit the cutter-rock contact stress distribution obtained in DEM simulations,whereby an improved CSM(Colorado School of Mines)model is proposed by replacing the original monotonic cutting force distribution with this combined Hertz-Weibull model.The proposed model outperforms the original CSM model as demonstrated by a comparison of the estimated cutting forces with those from the tests/simulations.The findings from this work that advance our understanding of TBM cutter performance have important implications for improving the efficiency and reliability of TBM tunnelling in granite.
基金supported in part by the Youth Foundation of China University of Petroleum-Beijing at Karamay(under Grant No.XQZX20230038)the Karamay Innovative Talents Program(under Grant No.20212022HJCXRC0005).
文摘The Rotary Inverted Pendulum(RIP)is a widely used underactuated mechanical system in various applications such as bipedal robots and skyscraper stabilization where attitude control presents a significant challenge.Despite the implementation of various control strategies to maintain equilibrium,optimally tuning control gains to effectively mitigate uncertain nonlinearities in system dynamics remains elusive.Existing methods frequently rely on extensive experimental data or the designer’s expertise,presenting a notable drawback.This paper proposes a novel tracking control approach for RIP,utilizing a Linear Quadratic Regulator(LQR)in combination with a reduced-order observer.Initially,the RIP system is mathematically modeled using the Newton-Euler-Lagrange method.Subsequently,a composite controller is devised that integrates an LQR for generating nominal control signals and a reduced-order observer for reconstructing unmeasured states.This approach enhances the controller’s robustness by eliminating differential terms from the observer,thereby attenuating unknown disturbances.Thorough numerical simulations and experimental evaluations demonstrate the system’s capability to maintain balance below50Hz and achieve precise tracking below1.4 rad,validating the effectiveness of the proposed control scheme.
文摘The North China Plain and the agricultural region are crossed by the Shanxi-Beijing natural gas pipeline.Resi-dents in the area use rototillers for planting and harvesting;however,the depth of the rototillers into the ground is greater than the depth of the pipeline,posing a significant threat to the safe operation of the pipeline.Therefore,it is of great significance to study the dynamic response of rotary tillers impacting pipelines to ensure the safe opera-tion of pipelines.This article focuses on the Shanxi-Beijing natural gas pipeline,utilizingfinite element simulation software to establish afinite element model for the interaction among the machinery,pipeline,and soil,and ana-lyzing the dynamic response of the pipeline.At the same time,a decision tree model is introduced to classify the damage of pipelines under different working conditions,and the boundary value and importance of each influen-cing factor on pipeline damage are derived.Considering the actual conditions in the hemp yam planting area,targeted management measures have been proposed to ensure the operational safety of the Shanxi-Beijing natural gas pipeline in this region.
基金Project (50975235) supported by the National Natural Science Foundation of ChinaProject (B08040) supported by the 111 Project
文摘In order to study the effects of the process parameters on springback and section deformation, a sensitivity analysis model was established based on the combination use of the multi-parameter sensitivity analysis method and the springback/section deformation prediction finite element model, and by using this model the sensitivities of the springback and the section deformation to process parameters were analyzed and compared. The results show that the most sensitive process conditions for springback angle are the boost speed and the pressure of pressure die, and the most sensitive process condition for section deformation is the number of cores. When the clamp force, the boost speed and the pressure of pressure die are utilized to control section deformation, the effect of these process parameters on springback should be considered. When the process parameters are mainly used to control springback, the effect of these process parameters on the section deformation should be always considered.
基金Project (20090450276) supported by the China Postdoctoral Science FoundationProject (50905008) supported by the National Natural Science Foundation of China
文摘The theoretical analysis of springback in rotary stretch bending process of L-section extrusion was studied. The models for characterizing the springback angle after unloading were established based on the stress and strain distributions in the cross-section of the part. With the proposed model, analysis of the effect of pre-stretch force and post-stretch force on springback angle shows that springback decreases as the pre-stretch force or post-stretch force increases. Comparative study with experiments clearly demonstrates that the prediction of springback can resort to the current model without the loss of accuracy.
基金Project (U0834002) supported by the Key Program of NSFC Guangdong Joint Funds of ChinaProjects (51005079, 20976055) supported by the National Natural Science Foundation of China+1 种基金Project (10451064101005146) supported by the Natural Science Foundation of Guangdong Province, ChinaProject (20100172120001) supported by Specialized Research Fund for the Doctoral Program of Higher Education, China
文摘A rotary swaging machine was applied to fabricating pipe reduction for miniature inner grooved copper tube (MIGCT) heat pipes. Compared with conventional swaging method, the axial feed of the designed rotary swaging machine was reached by a constant pushing force. The deformation of grooves in pipe reduced section during rotary swaging was analyzed. The shrinkage and extensibility of pipe reduction were measured and calculated. Furthermore, four aspects, including outer diameter, surface roughness, extensibility and processing time of pipe reduction, which were influenced by the pushing force, were considered. The results show that the tube wall thickness increases gradually along the z-axis at sinking section. However, the outer diameters, surface roughness and micro-cracks at reduced section tend to decrease along the z-axis. Besides, the effect of variation in the pushing force on the extensibility is limited while an increase in the pushing force results in a decrease of surface roughness. Therefore, a large pushing force within the limit is beneficial to pipe reduction manufacturing during rotary swaging process.
文摘Aim To get the analytical for laminar viscous flow in the gap of two parallel rotating disks. Methods By estimating the order of magnitude of each term in the Navier-Stokes equations to drop small terms and achieve the required simplified differential equations, and by integrating the equations to obtain the solution for theflow between two rotary disks. Results Parameters related to the laminar viscous flow in the gap between two parallel rotary disks, such as the velocity, the pressure, the flowrate, the force, the shearing stress, the torque and the power derived. Conclusion The result provides a theoretical basis and an effective method for the designs of the devices connected with the laminar viscous flow in the gap between two parallel rotary disks.
基金supported by the Ministry of Science and Technology of Taiwan under research grant No.MOST 103-2221-E-027-009Foxconn Technology Group
文摘The effects of Nd addition on the mechanical properties and plastic deformability of AZ71 Mg alloys were investigated.0.5%-2.0%(mass fraction) Nd was added to AZ71 Mg alloys.The grain size and the amount of brittle β-Mg17Al12 phase reduce with increasing the Nd addition,while nanosized AlxNdy precipitates form.In combination with 32% rotary forging and subsequent annealing,the grain size of Nd-added AZ71 Mg alloys reduces greatly from over 350 μm to below 30 μm.Both tensile strength and ductility increase with the Nd addition up to 1.0%.The addition of Nd beyond 1.0% leads to the aggregations of rod-shaped Al11Nd3 and blocky Al2 Nd precipitates,thereby deteriorating both strength and ductility.The 1.0% Nd-added AZ71 Mg alloy shows tensile strength up to 253 MPa and elongation of 10.7%.It is concluded that adding 1.0% Nd to AZ71 Mg alloy yields the optimum toughness,whether under as-cast or rotary forging and annealing conditions.
基金provided by the National Natural Science Foundation of China(No.51274200)Research Fund for the Doctoral Program of Higher Education of China(No.20130095110010)
文摘On the basis of understanding the principle of rotary triboelectrostatic separation, dynamic analysis of charged fly ash particles aimed at determining the key factors and separation experiments to improve decarbonization efficiency had been carried out Variables of electrode plate voltage and corrected wind speed are the key factors which affect the decarbonization efficiency on the separation of fly ash, The results of separation experiments show that:(1) With the plate voltage increasing, the efficiency of decarbonization continuously rises and in its selected range, the optimal voltage level is 45 KV;(2) The corrected wind speed can impact the efficiency of decarbonization significantly: with the speed increasing, the efficiency of decarbonization shows a trend of first decline, then increase and decrease again, and in its selected range, the optimal speed is 2.0 m/s. This study is of significance for the improvement of rotary triboelectrostatic separation performance and its decarbonization separation efficiency.
基金The Key Project of the 9th Five year Plan of Ministry of Science andTechnology!(No .960 40 2 0 2A)the Foundation for Unive
文摘Successfully developed an innovative process of direct reduction of cold bound pellets from iron ore concentrate with a coal based rotary kiln, in comparison with the traditional direct reduction of fired oxide pellets in coal based rotary kilns , possesses such advantages as: shorter flowsheet, lower capital investment, greater economic profit, good quality of direct reduced iron. The key technologies , such as the composite binder and corresponding feasible techniques were employed in practice. A mill utilizing this process and with an annual capacity of 50 thousand ton DRI has been put into operation.
基金financially supported by the National Key Basic Research and Development Program of China(No. 2012CB720405)
文摘A mathematical model was established to describe the direct reduction of pellets in a rotary hearth furnace (RHF). In the model, heat transfer, mass transfer, and gas-solid chemical reactions were taken into account. The behaviors of iron metallization and dezincification were analyzed by the numerical method, which was validated by experimental data of the direct reduction of pellets in a Si-Mo furnace. The simulation results show that if the production targets of iron metallization and dezincification are up to 80% and 90%, respectively, the furnace temperature for high-temperature sections must be set higher than 1300~ C. Moreover, an undersupply of secondary air by 20% will lead to a decline in iron metallization rate of discharged pellets by 10% and a decrease in dezincing rate by 13%. In addition, if the residence time of pellets in the furnace is over 20 min, its further extension will hardly lead to an obvious increase in production indexes under the same furnace temperature curve.
基金Work supported by the Second Stage of Brain Korea 21 Projects
文摘In order to develop a practical postprocessor for 5-axis machine tool,the general equations of numerically controlled(NC) data for 5-axis configurations with non-orthogonal rotary axes were exactly expressed by the inverse kinematics,and a windows-based postprocessor written with Visual Basic was developed according to the proposed algorithm.The developed postprocessor is a general system suitable for all kinds of 5-axis machines with orthogonal and non-orthogonal rotary axes.Through implementation of the developed postprocessor and verification by a cutting simulation and machining experiment,the effectiveness of the proposed algorithm is confirmed.Compatibility is improved by allowing exchange of data formats such as rotational total center position(RTCP) controlled NC data,vector post NC data,and program object file(POF) cutter location(CL) data,and convenience is increased by adding the function of work-piece origin offset.Consequently,a practical post-processor for 5-axis machining is developed.
基金Project(60634020) supported by the National Natural Science Foundation of China
文摘Based on the Fourier transform, a new shape descriptor was proposed to represent the flame image. By employing the shape descriptor as the input, the flame image recognition was studied by the methods of the artificial neural network(ANN) and the support vector machine(SVM) respectively. And the recognition experiments were carried out by using flame image data sampled from an alumina rotary kiln to evaluate their effectiveness. The results show that the two recognition methods can achieve good results, which verify the effectiveness of the shape descriptor. The highest recognition rate is 88.83% for SVM and 87.38% for ANN, which means that the performance of the SVM is better than that of the ANN.
基金Supported by National Natural Science Foundation of China(Grant Nos.51605431,51705456)Ningbo Municipal Natural Science Foundation of China(Grant No.2019A610162)Ningbo Major Scientific and Technological Projects(Grant No.2017C110005).
文摘The important parameters to describe waves are their amplitude and length.In order to make it easier to improve wave amplitude and facilitate wave experiment,a simple push-type wave generating method using digital rotary valve control was proposed and different wave amplitudes were generated by the new method.After the mathematical model of the new method had been established,numerical analysis based on the linear wave theory was carried out by means of Matlab/Simulink software tools,and experiments were conducted on the push-type wave maker to ascertain the validity of the established model and the numerical simulation results.It shows that both experimental and theoretical results agree relatively well,and the plate motion frequency and amplitude of the push-type wave maker can be continuously adjusted and the various required regular waves can be obtained.Although the wave amplitude and length descends with the increasing of working frequency,the wave amplitude can be improved conveniently by setting the axial opening width of the valve and the oil supply pressure of system.The wave length remains unchanged with the axial opening width and the oil supply pressure change.The research indicates that different regular waves can be easily generated by the new method and the wave amplitude can be further improved in a certain plate motion frequency range.