期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A new vibration mechanism of balancing machine for satellite-borne spinning rotors 被引量:1
1
作者 Wang Qiuxiao Wang Fei 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第5期1318-1326,共9页
The centrifugal force and overturning moment generated by satellite-borne rotating payload have a significant impact on the stability of on-orbit satellite attitude, which must be controlled to the qualified range. Fo... The centrifugal force and overturning moment generated by satellite-borne rotating payload have a significant impact on the stability of on-orbit satellite attitude, which must be controlled to the qualified range. For the satellite-borne rotors' low working revs and large centroidal deviation and height, and that the horizontal vibration produced by centrifugal force is not of the same magnitude as the torsional vibration by overturning moment, the balancing machine's measurement accuracy is low. Analysis shows that the mixture of horizontal vibration and torsional vibration of the vibrational mechanism contribute mainly to the machine's performance, as well as the instability of vibration center position. A vibrational mechanism was put forward, in which the horizontal and torsional vibration get separated effectively by way of fixing the vibration center. From experimental results, the separation between the weak centrifugal force signal and the strong moment signal was realized, errors caused by unstable vibration center are avoided, and the balancing machine based on this vibration structure is able to meet the requirements of dynamic balancing for the satellite's rotating payloads in terms of accuracy and stability. 展开更多
关键词 Rotational unbalance Satellite-borne rotor Separation of static unbalance and couple unbalance Vertical balancing machine Vibration measurement
原文传递
Performance characterization on downwash flow and spray drift of multirotor unmanned agricultural aircraft system based on CFD
2
作者 Hongze Li Hang Zhu +1 位作者 Zihao Jiang Yubin Lan 《International Journal of Agricultural and Biological Engineering》 SCIE CAS 2022年第3期1-8,共8页
In recent years,multi-rotor Unmanned Aerial Vehicles(UAVs)have been employed in the field of plant protection in China.Spray drift has been considered a major impact in agriculture aerial spraying,and spray quality in... In recent years,multi-rotor Unmanned Aerial Vehicles(UAVs)have been employed in the field of plant protection in China.Spray drift has been considered a major impact in agriculture aerial spraying,and spray quality in the application of plant protection products.The downwash including wake vortices and downward wind field plays a major role in the dispersal and deposition of pesticide spray released by nozzle(s)equipped in aircraft.Differ from the fixed-wing UAV,the downwash flow of multi-rotor UAV was result from the rotation of rotor.Therefore,a study on off-target drift and ground deposit concerning the rotor rotation was simulated through a series of Computational Fluid Dynamics(CFD)simulations to obtain the influence of downwash.The discrete Phase Model(DPM)was taken to simulate the motion of droplet particles since it is an appropriate way to simulate discrete phases in flow field and can track particle trajectory.In this study,the parameters of CFD simulations were acquired by three kinds of actual replicated experiment.The simulation analysis mainly obtains the droplet drift and deposition rule,the influence of eddy current,and downwash flow caused by the rotor rotation.The results showed that the downwash distribution below different rotors was different owing to the flight angle of inclination,“behind”is the greatest,“middle”is secondly,and“forward”is smallest in value(behind,middle,and forward represent three regions below rotors along flight direction).According to the simulation results,two methods of reducing droplet drift were put forward and specific simulations were carried out to prove their feasibility.The results of this study can provide theoretical support for improving the spray quality of UAV and reducing the drift of droplets. 展开更多
关键词 Unmanned Aerial Vehicles spray drift downward wind field rotor rotation eddy current downwash distribution
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部