期刊文献+
共找到63篇文章
< 1 2 4 >
每页显示 20 50 100
基于改进Faster R-CNN与U-Net算法的桥梁病害识别与量化方法
1
作者 乔朋 梁志强 +3 位作者 段长江 马晨 王思龙 狄谨 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第3期627-638,共12页
为实现桥梁病害检测的自动化,对基于图像处理技术的混凝土桥梁表观病害的智能识别和尺寸确定方法展开研究.提出基于改进Faster R-CNN算法的病害识别方法,利用K均值聚类和遗传算法对区域候选网络锚框进行优化设计;以裂缝预测区域为基础,... 为实现桥梁病害检测的自动化,对基于图像处理技术的混凝土桥梁表观病害的智能识别和尺寸确定方法展开研究.提出基于改进Faster R-CNN算法的病害识别方法,利用K均值聚类和遗传算法对区域候选网络锚框进行优化设计;以裂缝预测区域为基础,提出ResNet34结合U-Net的裂缝形态提取方法,并结合裂缝形态学研究了裂缝像素宽度和长度的确定方法.结果表明:锚框优化设计可改进Faster R-CNN算法的表观病害识别效果,5类常见病害的预测准确率、召回率、平均精确率分别由68.40%、69.87%、74.64%提升到85.40%、83.59%、83.72%;利用病害预测框,结合改进U-Net算法的裂缝像素尺寸计算,可实现裂缝病害尺寸的自动测量;基于改进Faster R-CNN和改进U-Net的方法可实现混凝土桥梁常见病害的智能识别和尺寸量化,从而提高桥梁病害检测效率并促进桥梁技术状况评定的智能化. 展开更多
关键词 桥梁工程 表观病害识别 裂缝尺寸确定 改进Faster R-CNN 改进U-Net
下载PDF
复杂背景下基于改进Mask R-CNN的路面裂缝检测算法
2
作者 张晓华 李小龙 +1 位作者 艾金泉 舒兆翰 《北京测绘》 2024年第3期431-436,共6页
裂缝检测对路面养护具有重要意义,深度学习在该领域取得一定成效。然而,在实际应用中,图像中的噪声纹理背景、复杂的裂缝拓扑结构和图像采集设备给裂缝检测带来了一定的挑战。为了提升在复杂场景下的路面裂缝检测精度,提出了一种改进掩... 裂缝检测对路面养护具有重要意义,深度学习在该领域取得一定成效。然而,在实际应用中,图像中的噪声纹理背景、复杂的裂缝拓扑结构和图像采集设备给裂缝检测带来了一定的挑战。为了提升在复杂场景下的路面裂缝检测精度,提出了一种改进掩码区域卷积神经网络(Mask R-CNN)模型的实例分割算法。使用ConvNeXt-T替代Mask R-CNN的ResNet50框架作为特征生成网络,在自下而上捕获长期依赖的同时保持裂缝特征多样性;设计高维特征提取模块(HFEM)获取高级语义信息,消除背景噪声;引入感受野模块(RFB),扩大感受野,增强多尺度特征信息交互能力。在多结构裂缝图像(MSCI)数据集上进行对比实验,结果表明,提出的改进方法能显著提升Mask R-CNN模型的分割精度,优于经典的Cascade Mask RCNN,最佳模型F1得分84.15%,相较原算法提高了6.29%。在DeepCrack数据集上进行泛化性实验,表现优异。 展开更多
关键词 路面裂缝检测 复杂场景 掩码区域卷积神经网络(Mask R-CNN) 实例分割
下载PDF
改进Mask R-CNN的无人机影像建筑物提取
3
作者 方超 廖运茂 +2 位作者 刘飞 王坚 赵小平 《北京测绘》 2024年第1期97-101,共5页
从无人机影像中自动提取建筑物对城乡规划和管理至关重要,然而,在复杂背景干扰和建筑物外观变化很大的情况下给实例提取带来挑战。因此,提出一种改进的Mask区域卷积神经网络(R-CNN)方法用于无人机影像的建筑物自动实例提取。改进方法以R... 从无人机影像中自动提取建筑物对城乡规划和管理至关重要,然而,在复杂背景干扰和建筑物外观变化很大的情况下给实例提取带来挑战。因此,提出一种改进的Mask区域卷积神经网络(R-CNN)方法用于无人机影像的建筑物自动实例提取。改进方法以ResNet-101作为特征提取网络,在特征融合网络方面,通过添加自底向上的路径增强整个特征层次的定位能力,同时在特征融合中加入空洞空间金字塔池化模块(ASPP)来提高多尺度能力与改善模型性能。在自制建筑物数据集上的综合实验结果表明,与原始的Mask R-CNN方法相比,改进方法的mAP值提高了2.6%,能够很好地实现无人机影像建筑物实例提取。 展开更多
关键词 建筑物提取 Mask R-CNN 路径融合 空洞空间金字塔池化模块
下载PDF
刮板机异常监测系统设计
4
作者 齐健 包国强 +6 位作者 尉维洁 刘峰 高磊 陈廷官 冯化一 吴昊 冯俊 《自动化仪表》 CAS 2024年第8期58-63,共6页
为了实时识别刮板机上的异常小目标,确保刮板机的正常、安全运行,设计了基于机器视觉的刮板机异常监测系统。数据采集层的工业摄像机采集单元基于机器视觉原理获取刮板机实时监测图像,经通用串行总线(USB)接口传输图像给数据处理层。对... 为了实时识别刮板机上的异常小目标,确保刮板机的正常、安全运行,设计了基于机器视觉的刮板机异常监测系统。数据采集层的工业摄像机采集单元基于机器视觉原理获取刮板机实时监测图像,经通用串行总线(USB)接口传输图像给数据处理层。对采集的刮板机图像作降噪、增强处理后,通过数据传输层的基于现场可编程门阵列(FPGA)的以太网通信模块完成图像的上传。数据监测层的异常状态监测模块依据接收到的图像,创新性地调用改进的掩蔽区域卷积神经网络(Mask R-CNN)模型,由异常报警模块发送报警信息,并通过数据显示层呈现异常监测结果及报警提示信息,以实现刮板机异常监测。试验结果表明:该系统处理后的刮板机图像峰值信噪比显著提升、均方根误差显著降低;增强后的刮板机图像异常识别损失更低。该系统可识别刮板机不同类型的异常,并标记异常目标。 展开更多
关键词 机器视觉 刮板机 异常监测 图像异常 现场可编程门阵列 掩蔽区域卷积神经网络模型
下载PDF
基于改进YOLOv8的风电叶片表面损伤检测与识别方法
5
作者 吴博阳 毛胜轲 +3 位作者 林特宇 任浩杰 蔡海洋 李扬 《机电工程》 CAS 北大核心 2024年第7期1260-1268,共9页
针对风电叶片极易出现损伤和故障,且制造和维护成本高昂等问题,提出了一种基于改进YOLOv8模型的风电叶片表面损伤检测与识别方法。首先,将现场拍摄到的高清叶片图像作为实验数据集,并将其按比例随机划分为训练集、验证集和测试集;然后,... 针对风电叶片极易出现损伤和故障,且制造和维护成本高昂等问题,提出了一种基于改进YOLOv8模型的风电叶片表面损伤检测与识别方法。首先,将现场拍摄到的高清叶片图像作为实验数据集,并将其按比例随机划分为训练集、验证集和测试集;然后,在YOLOv8模型中引入了动态数据增强算法Mosaic、Mixup及离线数据增强算法Albumentations,对训练数据集进行了扩充,解决了模型在有限数据集下的泛化性问题;最后,使用卷积注意力模块(CBAM)和梯度协调机制(GHM)/Focal loss算法等手段加强了模型的损伤检测能力,改进了样本分布不均衡问题,建立了一种先进的风电叶片表面损伤检测与识别方法,提升了YOLOv8模型对叶片损伤的检测精度。研究结果表明:改进后的YOLOv8模型在计算量和参数量都较低的情况下,其平均精度(AP)、平均召回率(AR)都超越了同等配置下的快速区域卷积神经网络(Faster R-CNN)模型。改进后的YOLOv8模型在交并比(IoU)阈值为0.5时的AP和AR分别达到了73.2%和58.8%,验证了该方法在风电叶片损伤检测方面具有一定的可靠性和有效性。 展开更多
关键词 风电叶片损伤识别 YOLOv8 目标检测 数据增强算法 卷积注意力模块 梯度协调机制 平均精度 平均召回率 快速区域卷积神经网络 交并比
下载PDF
基于改进Mask R-CNN的输电线路安全检测方法研究
6
作者 王铭晟 《通信电源技术》 2024年第17期219-221,共3页
随着全球电力需求的持续增长和电力网络的不断扩展,输电线路的安全性与稳定性尤为重要。输电线路在连接发电厂和用户的过程中,承担着可靠输送电能的重要职责。为提升输电线路的安全,研究提出一种基于掩膜区域卷积神经网络(Mask Region C... 随着全球电力需求的持续增长和电力网络的不断扩展,输电线路的安全性与稳定性尤为重要。输电线路在连接发电厂和用户的过程中,承担着可靠输送电能的重要职责。为提升输电线路的安全,研究提出一种基于掩膜区域卷积神经网络(Mask Region Convolutional Neural Network,Mask R-CNN)的输电线路安全检测模型,并引入特征金字塔网络(Feature Pyramid Network,FPN)对其进行改进。实验结果表明,在数据集尺寸为500时,改进Mask R-CNN模型的准确率为0.91,损失函数值为0.01。改进的Mask R-CNN模型能够有效提升输电线路缺陷检测的精度,具有较高的实用价值,能够提高电力系统的安全监控水平。 展开更多
关键词 输电线路 安全检测 掩膜区域卷积神经网络(Mask R-CNN) 特征金字塔网络(FPN)
下载PDF
基于Faster R-CNN的密集人群检测算法 被引量:4
7
作者 邹斌 张聪 《计算机应用》 CSCD 北大核心 2023年第1期61-66,共6页
为提高拥挤场景下的人群检测准确率,提出一种基于改进Faster R-CNN的密集人群检测算法。首先,在特征提取阶段添加空间与通道注意力机制,使用加强的双向特征金字塔网络(S-BiFPN)替代原网络中的多尺度特征金字塔(FPN),使网络对重要特征进... 为提高拥挤场景下的人群检测准确率,提出一种基于改进Faster R-CNN的密集人群检测算法。首先,在特征提取阶段添加空间与通道注意力机制,使用加强的双向特征金字塔网络(S-BiFPN)替代原网络中的多尺度特征金字塔(FPN),使网络对重要特征进行自主学习并加强对图像深层特征的提取;其次,引入多实例预测(MIP)算法对实例进行预测,以避免模型对拥挤场景下的目标造成漏检;最后,对模型中的非极大值抑制(NMS)进行优化,并额外增设一个交并比(IoU)阈值,以对检测结果的干扰项进行精确抑制。在开源的密集人群检测数据集上进行测试的结果显示,相较于原Faster R-CNN算法,所提算法的平均精度(AP)提升5.6%,Jaccard指数值提升3.2%。所提算法具有较高检测精度和稳定性,可以满足密集场景人群检测的需求。 展开更多
关键词 密集人群检测 Faster R-CNN 注意力机制 多实例预测 加强的双向特征金字塔网络
下载PDF
基于改进掩膜区域卷积神经网络的输电线路绝缘子自爆检测 被引量:16
8
作者 苟军年 杜愫愫 刘力 《电工技术学报》 EI CSCD 北大核心 2023年第1期47-59,共13页
由于背景复杂、目标所占像素比例较小,掩膜区域卷积神经网络(Mask R-CNN)模型对输电线路绝缘子缺陷检测能力不足,该文提出一种改进的MaskR-CNN模型。具体地,首先,在特征提取网络中引入卷积注意力模块(CBAM),分别从通道和空间提升小目标... 由于背景复杂、目标所占像素比例较小,掩膜区域卷积神经网络(Mask R-CNN)模型对输电线路绝缘子缺陷检测能力不足,该文提出一种改进的MaskR-CNN模型。具体地,首先,在特征提取网络中引入卷积注意力模块(CBAM),分别从通道和空间提升小目标特征保持性;其次,使用全局交并比(GIoU)计算目标间的相似度,提升定位准确性;最后,使用Tversky损失计算掩膜分支的损失,以提升不平衡样本下的检测效果。使用某输电运检中心无人机巡检作业所得具有自爆缺陷的绝缘子照片作为数据集对该模型进行验证,实验结果表明,与原始Mask R-CNN模型相比,该方法的平均精确率AP50:90、AP50和AP75分别提升至0.56、0.79和0.72;与三种经典目标检测算法相比,该算法具有较高的检测精度,模型的分割性能有一定提升,且比原始模型具有更好的鲁棒性,可以满足电力巡检中准确性和快速性的要求。 展开更多
关键词 绝缘子缺陷检测 掩膜区域卷积神经网络 卷积注意力模块 特征融合 全局交并比 Tversky损失
下载PDF
基于改进Faster R-CNN算法的行人识别系统设计与研究
9
作者 蔡劲松 李伟 《信息与电脑》 2023年第20期163-167,共5页
文章基于改进更快的区域卷积神经网络(Faster Region Convolutional Neural Networks,Faster R-CNN)模型,提出了一种行人识别系统设计。介绍了计算机视觉常用技术手段与方法、通行检测步骤,分析了主流的算法优缺点,利用深度学习方法提... 文章基于改进更快的区域卷积神经网络(Faster Region Convolutional Neural Networks,Faster R-CNN)模型,提出了一种行人识别系统设计。介绍了计算机视觉常用技术手段与方法、通行检测步骤,分析了主流的算法优缺点,利用深度学习方法提取图像特征,然后使用改进Faster R-CNN模型进行目标检测。在改进Faster R-CNN模型中,采用了自适应尺度池化和增强的感兴趣区域(Region of Interest,RoI)池化技术,可以提高模型检测精度和速度。 展开更多
关键词 行人检测 机器学习 更快的区域卷积神经网络(Faster R-CNN) 深度学习
下载PDF
基于深度学习的地铁施工作业人员不安全行为识别与应用 被引量:6
10
作者 范冰倩 董秉聿 +3 位作者 王彪 李铭 吴松 佟瑞鹏 《中国安全科学学报》 CAS CSCD 北大核心 2023年第1期41-47,共7页
为有效识别地铁施工作业人员不安全行为,基于深度学习与计算机视觉技术,提出融合行为和身份识别的不安全行为识别方法。首先,对更快速的基于区域的卷积神经网络(Faster R-CNN)算法进行优化,引入高效通道注意力(ECA)模块提升行为识别的... 为有效识别地铁施工作业人员不安全行为,基于深度学习与计算机视觉技术,提出融合行为和身份识别的不安全行为识别方法。首先,对更快速的基于区域的卷积神经网络(Faster R-CNN)算法进行优化,引入高效通道注意力(ECA)模块提升行为识别的准确性;其次,将基于人脸超分辨率算法的人脸识别方法与行为识别相结合,提升图像像素水平并准确输出不安全行为执行人员相关信息;然后,行为识别与人脸识别并发进行,识别结果回流至数据库最终输出工人不安全行为报告;最后,选取某地铁施工项目的4种不安全行为进行识别方法的实证应用。研究表明:该方法可在地铁施工场景下进行有效应用,不安全行为识别和执行人员身份识别的准确率均达0.85以上,具有较高的准确度。 展开更多
关键词 深度学习 地铁施工 不安全行为识别 作业人员 更快速的基于区域的卷积神经网络(Faster R-CNN) 人脸识别
下载PDF
基于更快区域卷积神经网络的多视角船舶识别 被引量:3
11
作者 程静 王荣杰 +2 位作者 曾光淼 林安辉 王亦春 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2023年第10期1832-1840,共9页
针对在复杂海洋环境下采集船舶多视角图像难度大、不同视角下船舶外观差异显著的问题,本文以自制的不同类型的多艘船舶的多视角图像为数据集训练更快区域卷积神经网络模型,利用平均F1分数、平均精度和平均误检率作为评价指标评估更快区... 针对在复杂海洋环境下采集船舶多视角图像难度大、不同视角下船舶外观差异显著的问题,本文以自制的不同类型的多艘船舶的多视角图像为数据集训练更快区域卷积神经网络模型,利用平均F1分数、平均精度和平均误检率作为评价指标评估更快区域卷积神经网络模型对不同视角船舶的识别性能,并通过识别不同船舶的F1分数和误检率分析更快区域卷积神经网络对不同质量、背景图像的识别能力。实验结果表明,更快区域卷积神经网络识别多角度船舶的平均F1分数为0.6969,平均精度为92.88%,平均误检率为8.34%,即更快区域卷积神经网络对多视角船舶有较高的识别能力,但对于有雾或昏暗环境下的低像素图像识别能力明显下降。 展开更多
关键词 多视角 船舶识别 视觉图像 更快区域卷积神经网络 目标检测 特征提取 深度学习 低分辨率图像
下载PDF
基于Faster R-CNN的人脸面部情感识别方法
12
作者 王潇 《信息与电脑》 2023年第21期148-150,共3页
常规人脸面部情感识别方法不准确,存在识别后的情感反馈误差大的问题,为此提出基于更快的区域卷积神经网络(Faster Region-Convolutional Neural Network,Faster R-CNN)的人脸面部情感识别方法。首先,采集人脸图像数据,通过面部检测、... 常规人脸面部情感识别方法不准确,存在识别后的情感反馈误差大的问题,为此提出基于更快的区域卷积神经网络(Faster Region-Convolutional Neural Network,Faster R-CNN)的人脸面部情感识别方法。首先,采集人脸图像数据,通过面部检测、面部对齐、面部数据增强、面部归一化4个步骤预处理面部图像;其次,基于多尺度特征融合算法提取表情特征,生成情感识别数据标签;最后,利用FasterR-CNN构建人脸面部情感识别模型,并识别人脸面部情感。实验结果表明,基于FasterR-CNN的人脸面部情感识别方法在6种基本表情中均具有90%以上的识别准确率。 展开更多
关键词 更快的区域卷积神经网络(Faster R-CNN) 人脸识别 面部情感识别 多尺度特征融合算法
下载PDF
基于Faster R-CNN的海底管道智能检测方法 被引量:4
13
作者 俞进 唐建华 +1 位作者 神祥凯 刘金海 《中国安全科学学报》 CAS CSCD 北大核心 2023年第6期80-87,共8页
为提高海底管道缺陷及组件的检测精度并实现智能化海底管道安全检测,提出一种基于快速区域卷积神经网络(Faster R-CNN)的海底管道智能检测方法。首先,通过基值校正和分段映射-伪彩色化方法,将漏磁检测信号转化为伪彩色图,以增强漏磁信... 为提高海底管道缺陷及组件的检测精度并实现智能化海底管道安全检测,提出一种基于快速区域卷积神经网络(Faster R-CNN)的海底管道智能检测方法。首先,通过基值校正和分段映射-伪彩色化方法,将漏磁检测信号转化为伪彩色图,以增强漏磁信号的关键特征;其次,基于多模态数据增强来提升检测模型的泛化能力;然后,基于多模态数据增强后的样本训练改进的Faster R-CNN网络,建立最优的智能检测模型;最后,以试验场和渤海在役管道为例,验证所提方法的有效性。结果表明:所提方法的平均检测精度可达93.8%,相较原始的Faster R-CNN算法提高8%,且平均交并比达到0.75,能够精准地实现海底油气管道多目标检测,保障海底管道的安全运行。 展开更多
关键词 快速区域卷积神经网络(Faster R-CNN) 海底管道 智能检测 漏磁内检测 多目标检测
下载PDF
基于改进R^(2) CNN 的遥感图像船舶检测方法研究
14
作者 林堉斌 邵哲平 林盛泓 《中国航海》 CSCD 北大核心 2023年第2期106-112,共7页
为深入研究光学遥感图像中的船舶检测问题,提升检测精度和降低模型复杂度,设计基于改进旋转区域卷积和神经网络(Rotational Region Convolutional Neural Networks),R^(2)CNN的两阶段旋转框检测模型。在模型的第一阶段使用水平框作为候... 为深入研究光学遥感图像中的船舶检测问题,提升检测精度和降低模型复杂度,设计基于改进旋转区域卷积和神经网络(Rotational Region Convolutional Neural Networks),R^(2)CNN的两阶段旋转框检测模型。在模型的第一阶段使用水平框作为候选区域;在模型第二阶段引入水平框预测分支,并且设计一种间接预测角度的回归模型;在测试阶段进行旋转框非极大值抑制时,设计基于掩码矩阵的旋转框IoU(Intersection over Union)算法。试验结果显示:改进R^(2)CNN模型在HRSC2016(High Resolution Ship Collection 2016)数据集上取得81.0%的平均精确度,相比其他模型均有不同程度的提升,说明改进R^(2)CNN在简化模型的同时能有效提升使用旋转框检测船舶的性能。 展开更多
关键词 船舶检测 遥感图像 卷积神经网络 R^(2)CNN模型 旋转框检测 候选区域提取
下载PDF
应用掩码区域卷积神经网络的文本检测模型
15
作者 赵小薇 季明辉 +1 位作者 徐秀娟 沈家乐 《应用科学学报》 CAS CSCD 北大核心 2023年第3期527-540,共14页
要:提出一种基于掩码区域卷积神经网络的文本检测模型。首先从扩大模型感受野并尽可能保持模型效率的角度出发,针对残差神经网络中的瓶颈结构进行优化,构建基于结构优化的残差神经网络(residual network based on structural optimizati... 要:提出一种基于掩码区域卷积神经网络的文本检测模型。首先从扩大模型感受野并尽可能保持模型效率的角度出发,针对残差神经网络中的瓶颈结构进行优化,构建基于结构优化的残差神经网络(residual network based on structural optimization,ResNetSO);然后去除冗余特征以提高融合后特征质量,并将空间注意力机制应用于特征金字塔网络,构建了基于下层特征指导的特征金字塔网络(feature pyramid network based on lower feature guidance,FPNetLFG)。在两个公开数据集上的实验结果表明:包含ResNetSO和FPNetLFG两个模块的模型应用在级联区域卷积神经网络、递归特征金字塔和可切换空洞卷积的目标检测模型中,分别可以带来0.8%和0.3%左右的F1值提升,从而说明了该方法的有效性和普遍适用性。 展开更多
关键词 文本检测 掩码区域卷积神经网络 主干网络 结构优化 特征金字塔网络
下载PDF
基于Faster-RCNN算法的无人机高速铁路接触网开口销缺陷检测方法的研究
16
作者 胡代弟 《电子测试》 2023年第2期104-108,共5页
当前高速铁路接触网参数检测中,存在开口销体积小、分布分散、故障缺陷识别困难,过度依赖综合检测车等问题。本文提出一种采用无人机航拍,结合图像分割与识别技术的基于更快的区域卷积神经网络(Faster R-CNN)算法实现图像处理和优化,进... 当前高速铁路接触网参数检测中,存在开口销体积小、分布分散、故障缺陷识别困难,过度依赖综合检测车等问题。本文提出一种采用无人机航拍,结合图像分割与识别技术的基于更快的区域卷积神经网络(Faster R-CNN)算法实现图像处理和优化,进而对开口销缺陷进行检测识别的方法,有效地提升开口销缺陷识别准确率和有效性。测试结果表明,采用基于Faster R-CNN算法的无人机高速铁路接触网开口销缺陷检测方法的开口销图像缺陷识别准确率可达到98%以上,平均精度约90%,接受者操作特征曲线下的面积(area under curve,AUC)大于0.98。该算法通过软件开发工具包(software development kit,SDK)嵌入到无人机,实现接触网开口销自动巡检、智能识别,为现场作业提供智能化检测设备,提升接触网的智能化检测手段,保障高速铁路安全运行。 展开更多
关键词 Faster R-CNN算法 无人机 高速铁路接触网 开口销 故障检测
下载PDF
变电站指针式仪表自动读数系统设计
17
作者 李芋汶 李东阳 +1 位作者 周舒涛 毛子安 《信息与电脑》 2023年第3期167-169,共3页
针对变电站指针式仪表人工抄表存在易受工作人员主观因素影响,常发生漏检、误检,存在工作环境辐射危害大等问题,设计一种由巡检机器人和图像处理技术组成的变电站指针式仪表自动读数系统。该系统以STM32芯片为核心,由工字电磁传感器、... 针对变电站指针式仪表人工抄表存在易受工作人员主观因素影响,常发生漏检、误检,存在工作环境辐射危害大等问题,设计一种由巡检机器人和图像处理技术组成的变电站指针式仪表自动读数系统。该系统以STM32芯片为核心,由工字电磁传感器、双自由度云台、高清变倍相机以及ESP8266等组成的巡检机器人,能精确定位在仪表前对仪表图像进行采集并传回计算机终端。由计算机终端通过改进的区域卷积神经网络(Faster Region Convolutional Neural Networks,Faster R-CNN)目标检测算法提取出仪表盘高清图像,去除冗余信息后经霍夫变换检测出指针中心线位置,得出仪表读数。 展开更多
关键词 变电站 巡检机器人 指针式仪表 目标检测 图像处理 改进的区域卷积神经网络(Faster R-CNN)
下载PDF
基于改进快速区域卷积神经网络的视频SAR运动目标检测算法研究 被引量:32
18
作者 闫贺 黄佳 +3 位作者 李睿安 王旭东 张劲东 朱岱寅 《电子与信息学报》 EI CSCD 北大核心 2021年第3期615-622,共8页
针对传统视频SAR(ViSAR)运动目标检测方法存在的帧间配准难度大、快速运动目标阴影特征不明显、虚警概率高等问题,该文提出一种基于改进快速区域卷积神经网络(Faster R-CNN)的视频SAR运动目标检测方法。该方法结合Faster R-CNN深度学习... 针对传统视频SAR(ViSAR)运动目标检测方法存在的帧间配准难度大、快速运动目标阴影特征不明显、虚警概率高等问题,该文提出一种基于改进快速区域卷积神经网络(Faster R-CNN)的视频SAR运动目标检测方法。该方法结合Faster R-CNN深度学习算法,利用K-means聚类方法对anchor box的长宽及长宽比进行预处理,并采用特征金字塔网络(FPN)架构对视频SAR运动目标的“亮线”特征进行检测。与传统方法相比,该方法具有实现简单、检测概率高、虚警概率低等优势。最后,通过课题组研制的Mini-SAR系统获取的实测视频SAR数据验证了新方法的有效性。 展开更多
关键词 视频SAR 运动目标检测 快速区域卷积神经网络 特征金字塔网络 K-MEANS
下载PDF
基于改进Faster R-CNN的无人机视频车辆自动检测 被引量:10
19
作者 彭博 蔡晓禹 +2 位作者 唐聚 谢济铭 张媛媛 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2019年第6期1199-1204,共6页
为了从广域视角准确提取道路交通信息,提出了一种用于无人机视频车辆自动识别的改进Faster R-CNN模型.该模型以基于ZF网络的Faster R-CNN为原型,优化调整学习策略、训练图像尺寸、学习率等模型参数,调整RPN网络卷积核并引入SoftNMS算法... 为了从广域视角准确提取道路交通信息,提出了一种用于无人机视频车辆自动识别的改进Faster R-CNN模型.该模型以基于ZF网络的Faster R-CNN为原型,优化调整学习策略、训练图像尺寸、学习率等模型参数,调整RPN网络卷积核并引入SoftNMS算法,增加1~3个特征提取卷积层和激活层.基于无人机交通视频构建了训练图像集,对现有Faster R-CNN模型及改进模型进行训练和测试.结果显示,与采用Step学习策略的模型相比,采用学习策略Inv的模型车辆识别平均准确率提高了0.4%~9.4%.引入SoftNMS算法的模型比引入前的模型平均准确率提高了0.1%~7.9%.提出的改进模型平均准确率为94.6%,较基于ZF的Faster R-CNN模型、基于VGGM的Faster R-CNN模型和基于VGG16的Faster R-CNN模型分别提高了13.1%、13.1%和4.1%,且训练时间减少约3%,对多种场景的视频车辆检测具有较好的适用性. 展开更多
关键词 智能交通 车辆检测 深度学习 无人机视频 FASTER R-CNN
下载PDF
基于改进Faster R-CNN的铁路客车螺栓检测研究 被引量:12
20
作者 赵江平 徐恒 党悦悦 《中国安全科学学报》 CSCD 北大核心 2021年第7期82-89,共8页
为确保铁路客车运行安全,提出一种基于快速区域卷积神经网络(Faster R-CNN)目标检测的客车关键部件图像缺陷检测算法,针对算法在小尺度螺栓检测方面存在的问题提出2点改进,首先,结合深度残差网络和Inception网络两者优点替换原VGG16网络... 为确保铁路客车运行安全,提出一种基于快速区域卷积神经网络(Faster R-CNN)目标检测的客车关键部件图像缺陷检测算法,针对算法在小尺度螺栓检测方面存在的问题提出2点改进,首先,结合深度残差网络和Inception网络两者优点替换原VGG16网络,并增加上采样层,解决图像经过卷积网络特征信息流失严重的问题;其次,通过K-means++聚类算法优化区域建议网络(RPN)中锚点的尺寸和比例,提高生成建议区域的精确性,解决缺陷目标定位不准确的问题;最后,用创建的螺栓缺陷数据集进行对比验证。结果表明:改进后的算法检测准确率可达87.4%,相较原算法提高8.9%,且对于多目标缺陷与混淆目标,漏检率与误检率分别降低9.9%和11%。 展开更多
关键词 铁路客车 缺陷图像 目标检测 Faster R-CNN K-means++
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部