文章基于改进更快的区域卷积神经网络(Faster Region Convolutional Neural Networks,Faster R-CNN)模型,提出了一种行人识别系统设计。介绍了计算机视觉常用技术手段与方法、通行检测步骤,分析了主流的算法优缺点,利用深度学习方法提...文章基于改进更快的区域卷积神经网络(Faster Region Convolutional Neural Networks,Faster R-CNN)模型,提出了一种行人识别系统设计。介绍了计算机视觉常用技术手段与方法、通行检测步骤,分析了主流的算法优缺点,利用深度学习方法提取图像特征,然后使用改进Faster R-CNN模型进行目标检测。在改进Faster R-CNN模型中,采用了自适应尺度池化和增强的感兴趣区域(Region of Interest,RoI)池化技术,可以提高模型检测精度和速度。展开更多
为深入研究光学遥感图像中的船舶检测问题,提升检测精度和降低模型复杂度,设计基于改进旋转区域卷积和神经网络(Rotational Region Convolutional Neural Networks),R^(2)CNN的两阶段旋转框检测模型。在模型的第一阶段使用水平框作为候...为深入研究光学遥感图像中的船舶检测问题,提升检测精度和降低模型复杂度,设计基于改进旋转区域卷积和神经网络(Rotational Region Convolutional Neural Networks),R^(2)CNN的两阶段旋转框检测模型。在模型的第一阶段使用水平框作为候选区域;在模型第二阶段引入水平框预测分支,并且设计一种间接预测角度的回归模型;在测试阶段进行旋转框非极大值抑制时,设计基于掩码矩阵的旋转框IoU(Intersection over Union)算法。试验结果显示:改进R^(2)CNN模型在HRSC2016(High Resolution Ship Collection 2016)数据集上取得81.0%的平均精确度,相比其他模型均有不同程度的提升,说明改进R^(2)CNN在简化模型的同时能有效提升使用旋转框检测船舶的性能。展开更多
要:提出一种基于掩码区域卷积神经网络的文本检测模型。首先从扩大模型感受野并尽可能保持模型效率的角度出发,针对残差神经网络中的瓶颈结构进行优化,构建基于结构优化的残差神经网络(residual network based on structural optimizati...要:提出一种基于掩码区域卷积神经网络的文本检测模型。首先从扩大模型感受野并尽可能保持模型效率的角度出发,针对残差神经网络中的瓶颈结构进行优化,构建基于结构优化的残差神经网络(residual network based on structural optimization,ResNetSO);然后去除冗余特征以提高融合后特征质量,并将空间注意力机制应用于特征金字塔网络,构建了基于下层特征指导的特征金字塔网络(feature pyramid network based on lower feature guidance,FPNetLFG)。在两个公开数据集上的实验结果表明:包含ResNetSO和FPNetLFG两个模块的模型应用在级联区域卷积神经网络、递归特征金字塔和可切换空洞卷积的目标检测模型中,分别可以带来0.8%和0.3%左右的F1值提升,从而说明了该方法的有效性和普遍适用性。展开更多
当前高速铁路接触网参数检测中,存在开口销体积小、分布分散、故障缺陷识别困难,过度依赖综合检测车等问题。本文提出一种采用无人机航拍,结合图像分割与识别技术的基于更快的区域卷积神经网络(Faster R-CNN)算法实现图像处理和优化,进...当前高速铁路接触网参数检测中,存在开口销体积小、分布分散、故障缺陷识别困难,过度依赖综合检测车等问题。本文提出一种采用无人机航拍,结合图像分割与识别技术的基于更快的区域卷积神经网络(Faster R-CNN)算法实现图像处理和优化,进而对开口销缺陷进行检测识别的方法,有效地提升开口销缺陷识别准确率和有效性。测试结果表明,采用基于Faster R-CNN算法的无人机高速铁路接触网开口销缺陷检测方法的开口销图像缺陷识别准确率可达到98%以上,平均精度约90%,接受者操作特征曲线下的面积(area under curve,AUC)大于0.98。该算法通过软件开发工具包(software development kit,SDK)嵌入到无人机,实现接触网开口销自动巡检、智能识别,为现场作业提供智能化检测设备,提升接触网的智能化检测手段,保障高速铁路安全运行。展开更多
文摘文章基于改进更快的区域卷积神经网络(Faster Region Convolutional Neural Networks,Faster R-CNN)模型,提出了一种行人识别系统设计。介绍了计算机视觉常用技术手段与方法、通行检测步骤,分析了主流的算法优缺点,利用深度学习方法提取图像特征,然后使用改进Faster R-CNN模型进行目标检测。在改进Faster R-CNN模型中,采用了自适应尺度池化和增强的感兴趣区域(Region of Interest,RoI)池化技术,可以提高模型检测精度和速度。
文摘要:提出一种基于掩码区域卷积神经网络的文本检测模型。首先从扩大模型感受野并尽可能保持模型效率的角度出发,针对残差神经网络中的瓶颈结构进行优化,构建基于结构优化的残差神经网络(residual network based on structural optimization,ResNetSO);然后去除冗余特征以提高融合后特征质量,并将空间注意力机制应用于特征金字塔网络,构建了基于下层特征指导的特征金字塔网络(feature pyramid network based on lower feature guidance,FPNetLFG)。在两个公开数据集上的实验结果表明:包含ResNetSO和FPNetLFG两个模块的模型应用在级联区域卷积神经网络、递归特征金字塔和可切换空洞卷积的目标检测模型中,分别可以带来0.8%和0.3%左右的F1值提升,从而说明了该方法的有效性和普遍适用性。
文摘当前高速铁路接触网参数检测中,存在开口销体积小、分布分散、故障缺陷识别困难,过度依赖综合检测车等问题。本文提出一种采用无人机航拍,结合图像分割与识别技术的基于更快的区域卷积神经网络(Faster R-CNN)算法实现图像处理和优化,进而对开口销缺陷进行检测识别的方法,有效地提升开口销缺陷识别准确率和有效性。测试结果表明,采用基于Faster R-CNN算法的无人机高速铁路接触网开口销缺陷检测方法的开口销图像缺陷识别准确率可达到98%以上,平均精度约90%,接受者操作特征曲线下的面积(area under curve,AUC)大于0.98。该算法通过软件开发工具包(software development kit,SDK)嵌入到无人机,实现接触网开口销自动巡检、智能识别,为现场作业提供智能化检测设备,提升接触网的智能化检测手段,保障高速铁路安全运行。