Economic analysis of different diversified rotational cropping systems under Farmers' package/practices and improved package/practices was conducted in Birbhum district, West Bengal, located in the red and lateritic ...Economic analysis of different diversified rotational cropping systems under Farmers' package/practices and improved package/practices was conducted in Birbhum district, West Bengal, located in the red and lateritic belt of lower Gangetic plain of eastern lndia. Diversified triple cropping systems (peanut-brinjal+brinjal, rice-potato-pumpkin, and cucumber-cabbage-basella) required higher cost for cultivation, but also produced higher rice equivalent yield, higher net return and higher return rupee1 invested in both management practices. Considering the resource-ability and risk-bearing capacity, and net return and return rupee^-1 (RPR) invested, these cropping systems can be recommended for resource-rich farmers. Rice-rapeseed-cowpea, rice-wheat-green gram and radish-tomato-amaranthus systems profitable. These cropping systems can be required less inputs for cultivation, were less risky, and economically viable and recommended for resource-poor farmers. Peanut-brinjal + brinjal-okra-chilli + chilli-cucumber-cabbage-basella system was the best among all the 3-year rotational systems in respect to RPR in both management practices. This rotational system will be suitable for resource-rich farmers. Vegetable-based rotational systems (ridge gourd-marigold-okra-black gram-pointed gourd + pointed gourd-radish-tomato-amaranthus) or rice-based rotational system (rice-wheat-green gram-rice-rapeseed-cowpea-rice-potato-pumpkin) also found to be suitable to increase the profitability and system sustainability. These cropping systems can be recommended for all groups of farmers.展开更多
A field experiment was conducted from 2002-2005 on a sandy clay loam red and lateritic soil under irrigation in a farmer's field at Senkapur (Lat. 23°36.79′ N, Long. 87°38.14′E, Elev. 46 m AMSL), Birbhu...A field experiment was conducted from 2002-2005 on a sandy clay loam red and lateritic soil under irrigation in a farmer's field at Senkapur (Lat. 23°36.79′ N, Long. 87°38.14′E, Elev. 46 m AMSL), Birbhum, West Bengal, India. The objective was to provide the temporal changes of weed diversity and density, ecology, and impact of rotational cropping systems on different crops under double and triple cropping systems with improved (IP) and farmer's packages (FP). There was significantly higher weed density in FP than in IP on all years. Grasses and sedges were more in vegetable-based rotational systems; but grasses and broad leaf weeds (BLWs) were more in rice-based rotational systems. The lowest weed population was in vegetable-based systems. Grasses increased in rice-based systems but gradually decreased in vegetable-based systems in subsequent years. Sedge density was higher in vegetable- than in rice-based rotational systems. Density of BLWs was higher but that of sedges was lower in rice-based rotational systems as compared to vegetable-based systems. Density of BLWs gradually decreased in all rotational systems over the years in both packages. Density of weeds decreased gradually in subsequent years indicating the positive effect of rotational systems on suppression of weeds. Results indicate that the weed density can be reduced through judicious diversified rotational cropping systems. Peanut-brinjal+brinjal, okra-chilli+chilli and cucumber-cabbage-basella systems greatly reduced the weed density in both packages, and hence can be recommended for the lateritic belt of lower Gangetic plain of eastern India.展开更多
In recent years,the area dedicated to cotton cultivation in eastern Henan Province has experienced a continuous decline.Developing efficient multi-cropping systems for cotton and increasing the multiple cropping index...In recent years,the area dedicated to cotton cultivation in eastern Henan Province has experienced a continuous decline.Developing efficient multi-cropping systems for cotton and increasing the multiple cropping index represent effective strategies to stabilize the cotton planting area and enhance the income of cotton farmers.This paper presents an overview of intercropping systems and the benefits associated with cotton rotation and intercropping practices.Specifically,it discusses the"early maturing cotton-wheat"rotation system,the"cotton-watermelon"intercropping system,the"cotton-Dutch bean"intercropping system,and the"early maturing cotton-peanut-garlic"intercropping system.展开更多
Certain agricultural management practices are known to affect the soil microbial community structure;however,knowledge of the response of the fungal community structure to the long-term continuous cropping and rotatio...Certain agricultural management practices are known to affect the soil microbial community structure;however,knowledge of the response of the fungal community structure to the long-term continuous cropping and rotation of soybean,maize and wheat in the same agroecosystem is limited.We assessed the fungal abundance,composition and diversity among soybean rotation,maize rotation and wheat rotation systems and among long-term continuous cropping systems of soybean,maize and wheat as the effect of crop types on fungal community structure.We compared these fungal parameters of same crop between long-term crop rotation and continuous cropping systems as the effect of cropping systems on fungal community structure.The fungal abundance and composition were measured by quantitative real-time PCR and Illumina MiSeq sequencing.The results revealed that long-term continuous soybean cropping increased the soil fungal abundance compared with soybean rotation,and the fungal abundance was decreased in long-term continuous maize cropping compared with maize rotation.The long-term continuous soybean cropping also exhibited increased soil fungal diversity.The variation in the fungal community structure among the three crops was greater than that between long-term continuous cropping and rotation cropping.Mortierella,Guehomyces and Alternaria were the most important contributors to the dissimilarity of the fungal communities between the continuous cropping and rotation cropping of soybean,maize and wheat.There were 11 potential pathogen and 11 potential biocontrol fungi identified,and the relative abundance of most of the potential pathogenic fungi increased during the long-term continuous cropping of all three crops.The relative abundance of most biocontrol fungi increased in long-term continuous soybean cropping but decreased in long-term continuous maize and wheat cropping.Our results indicate that the response of the soil fungal community structure to long-term continuous cropping varies based upon crop types.展开更多
A two-year on-farm study was carried out at Eglime in the moist savanna (MS) and Ouake in the dry savanna (DS) of Benin to evaluate the contribution of inoculation of dual-purpose soybean varieties to grain yield ...A two-year on-farm study was carried out at Eglime in the moist savanna (MS) and Ouake in the dry savanna (DS) of Benin to evaluate the contribution of inoculation of dual-purpose soybean varieties to grain yield of upland NERICA rice fertilized with low N level. In 2005, four dual-purpose, promiscuous soybean varieties (cv. TGx1440-IE; TG×1448-2E; TG×1019-2EB; and TG×1844-18E), and a popular improved variety (cv. Jupiter) were sown in 12 farmer fields with and without Bradyrhizobium japonicum inoculation. There was also land which was left fallow that acted as the control. In 2006, upland interspecific rice (NERICA 1) was sown in all the plots and supplied with 15 kg N haL. Dry matter yield, N accumulation, and net N-balance were significantly enhanced by over 40% with inoculation of cv. TG× 1844-18E than non-inoculation in the DS in comparison to other cultivars. There were no significant effects of inoculation of previous soybean cultivars on soybean grain yield and on the succeeding NERICA rice yield. Averaged over inoculation, previous cv. TG× 1019-2EB plots supplied with only 15 kg N hal gave the highest grain yield, more than twice the yield of control plots in the DS, possibly because of significant production of higher tillers, panicles and harvest index than the other cultivars; and it could be recommended for upland rice-based system for NERICA production.展开更多
To better understand the effects of direct sowing under mulch-based cropping system (DMC) in Burkina Faso’s cotton production systems, randomized blocks of Fisher experimental design were implemented at Farako-B<s...To better understand the effects of direct sowing under mulch-based cropping system (DMC) in Burkina Faso’s cotton production systems, randomized blocks of Fisher experimental design were implemented at Farako-B<span style="white-space:nowrap;">a</span> research station from 2010 to 2019. The study was conducted on lixisoil to evaluate DMC effects on biomass production, crops yields and soil chemical properties in a maize and cotton rotation system associated with cover crop. Conventional tillage and direct seeding without cover crop were compared to DMC under <em>B</em>. <em>ruziziensis</em> (GERM. & EVRARD), DMC under <em>B</em>. <em>ruziziensis</em> + <em>M</em><em>.</em> <em>cochinchinensis</em> mulch and DMC under <em>C. juncea</em> (L.) mulch used in association with maize. Biomass production, crop yields and soil chemistry were evaluated. Results showed that over 10 years, no-till with or without a cover crop provided cotton seed and maize yields that were statistically equivalent to the tillage commonly practiced by farmers. Cover crop has allowed increasing the biomass production compared to Conventional Tillage and Direct Seeding. Maize yield has not varied significantly with the cover crop. After 10 years of maize and cotton rotation, the improvement raised from +27% to +38% for organic matter and from +15% to +29% for nitrogen with DMC including legumes such as <em>M. cochinchinensis</em> and <em>C. juncea</em> compared to Conventional Tillage on 0 - 5 cm depth. No significant differences were found on soil pH like P<sub>2</sub>O<sub>5</sub> and K<sub>2</sub>O content. Although DMC with <em>C. juncea</em> used as cover crop did not provide the best biomass production, it contributes to increase nitrogen and organic matter and presents better mineral balances in 10 years of rotation. The 5 - 10 cm and 10 - 20 cm were little influenced by DMC systems.展开更多
Nitrogen(N)is a key factor in the positive response of cereal crops that follow leguminous crops when compared to gramineous crops in rotations,with the nonrecyclable rhizosphere-derived N playing an important role.Ho...Nitrogen(N)is a key factor in the positive response of cereal crops that follow leguminous crops when compared to gramineous crops in rotations,with the nonrecyclable rhizosphere-derived N playing an important role.However,quantitative assessments of differences in the N derived from rhizodeposition(NdfR)between legumes and gramineous crops are lacking,and comparative studies on their contributions to the subsequent cereals are scarce.In this study,we conducted a meta-analysis of NdfR from leguminous and gramineous crops based on 34 observations published worldwide.In addition,pot experiments were conducted to study the differences in the NdfR amounts,distributions and subsequent effects of two major wheat(Triticum aestivum L.)-preceding crops,corn(Zea mays L.)and soybean(Glycine max L.),by the cotton wick-labelling method in the main wheat-producing areas of China.The meta-analysis results showed that the NdfR of legumes was significantly greater by 138.93%compared to gramineous crops.In our pot experiment,the NdfR values from corn and soybean were 502.32 and 944.12 mg/pot,respectively,and soybean was also significantly higher than corn,accounting for 76.91 and 84.15%of the total belowground nitrogen of the plants,respectively.Moreover,in different soil particle sizes,NdfR was mainly enriched in the large macro-aggregates(>2 mm),followed by the small macro-aggregates(2–0.25 mm).The amount and proportion of NdfR in the macro-aggregates(>0.25 mm)of soybean were 3.48 and 1.66 times higher than those of corn,respectively,indicating the high utilization potential of soybean NdfR.Regarding the N accumulation of subsequent wheat,the contribution of soybean NdfR to wheat was approximately 3 times that of corn,accounting for 8.37 and 4.04%of the total N uptake of wheat,respectively.In conclusion,soybean NdfR is superior to corn in terms of the quantity and distribution ratio of soil macro-aggregates.In future field production,legume NdfR should be included in the nitrogen pool that can be absorbed and utilized by subsequent crops,and the role and potential of leguminous plants as nitrogen source providers in crop rotation systems should be fully utilized.展开更多
The rapid identification of planting patterns for major crops in a large irrigated district has vital importance for irrigation management,water fee collection,and crop yield estimation.In this study,the OTSU algorith...The rapid identification of planting patterns for major crops in a large irrigated district has vital importance for irrigation management,water fee collection,and crop yield estimation.In this study,the OTSU algorithm and Mean-Shift algorithm were employed to automatically determine threshold values for mapping two main rotated crop patterns at the pixel scale.A time series analysis was conducted to extract the spatial distribution of rice-wheat and wheat-maize rotations in the Chuanhang irrigation district from 2016 to 2020.The results demonstrate that both threshold segmentation algorithms are reliable in extracting the spatial distribution of the crops,with an overall accuracy exceeding 80%.Additionally,both Kappa coefficients surpass 0.7,indicating better performance by OTSU method.Over the period from 2016 to 2020,the area occupied by rice-wheat rotation cropping ranged from 12500 to 14400 hm 2;whereas wheat-maize rotation cropping exhibited smaller and more variable areas ranging from 19730 to 34070 hm 2.These findings highlight how remote sensing-based approaches can provide reliable support for rapidly and accurately identifying the spatial distribution of main crop rotation patterns within a large irrigation district.展开更多
Conservation Agriculture(CA)covers more than 205 million hectares in the world.This made it possible to face and mitigate the challenges of climate change,reducing soil erosion and providing multiple ecosystem service...Conservation Agriculture(CA)covers more than 205 million hectares in the world.This made it possible to face and mitigate the challenges of climate change,reducing soil erosion and providing multiple ecosystem services.The first elementary factor influenced is the yield evaluation.It has a direct effect on farmers’choices for sustainable production.The present article records a review focused on wheat yield average positive change compared between conventional tillage(CT)and no tillage(NT)systems.The international database collected showed that NT is adaptable everywhere.The results of wheat yield differentiation showed the influence of crop rotation depending on stations located in different climatic zones.In more than 40 years of research,specialists have succeeded in demonstrating the importance of crop productivity like wheat.The whole integrates also experimentations where the initiation starts more than ten years.展开更多
[Objective] Nitrogen and phosphorus losses of surface runoff in various crop rotation systems in the north of Erhai Lake basin were studied with the objective to provide references for risk evaluation of environmental...[Objective] Nitrogen and phosphorus losses of surface runoff in various crop rotation systems in the north of Erhai Lake basin were studied with the objective to provide references for risk evaluation of environmental pollution and formulating countermeasures to control the nonpoint source pollution from agriculture.[Method] Water samples collected in four typical crop rotation systems distributed in seven towns(townships) in the north of Erhai Lake basin were investigated,as well as the fertilizer input,to explore the dynamic change of nitrogen and phosphorus content in surface water of farmland and ditch water,and the correlation between fertilizer input and the concentrations of nitrogen and phosphorus in the surface water of farmland and in the ditch water.[Result] The results showed that nitrogen loss in surface water of farmland in different crop rotation systems differed greatly,and the risk of nitrogen loss was 38% lower in broad bean-rice crop rotation than that in garlic-rice crop rotation.The water soluble nitrogen was the primary form of nitrogen loss.The content of water soluble nitrogen was significantly higher in garlic-rice crop rotation than that in the other rotation systems,and the concentrations of nitrogen in the surface water of farmland in different crop rotation systems followed the sequence below:garlic-rice crop rotationryegrass-rice crop rotationbroad bean-rice crop rotationrape-rice crop rotation.The loss of phosphorus in the surface water of farmland was relatively low and phosphorus combined with silt was the primary form for phosphorus loss.There was no significant difference of the loss of various forms of phosphorus in different crop rotation systems.The contents of total nitrogen and total phosphorus in the surface water of farmland were higher than that in ditch water,with increasing rates of total nitrogen and total phosphorus in ditch water of 72% and 82%,respectively.Topdressing was the critical reason for the high concentrations of nitrogen and phosphorus in the surface water,which also caused the increasing load to the ditch water.[Conclusion] Both the nitrogen and phosphorus loss were the highest in garlic-rice crop rotation.Reasonable crop rotation systems should be established based on both the environmental and economic benefits.This study provided references for controlling the nonpoint source pollution of farmland and improving the water quality of Erhai Lake.展开更多
Pot experiments were conducted under greenhouse condition to investigate whether Cd and Pb uptake by rice could be reduced when it was rotated with oilseed rape and compost application.The results showed that the rice...Pot experiments were conducted under greenhouse condition to investigate whether Cd and Pb uptake by rice could be reduced when it was rotated with oilseed rape and compost application.The results showed that the rice grown after oilseed rape had significantly lower Cd and Pb concentrations in both straw and grains.Cd and Pb concentrations in the grains of the rice rotated with oilseed rape decreased by approximately 46-80% and 17-86%,respectively,although the Cd and Pb removal by oilseed rape ranged only from 2.39-3.67 and 0.032-0.13% of the total content in soil.Compost amendment also decreased the bioavailability of Cd and Pb in the soil and reduced Cd and Pb uptake by oilseed rapes and rice.The concentrations of Cd and Pb significantly decreased in the exchangeable and carbonate fractions and Pb concentration decreased in the organic matter and sulfide fractions in the contaminated soil after planting oilseed rapes.展开更多
Rapeseed (Brassica campestris L.), a Cd-accumulating crop, is effective in reducing plant-available Cd from soil. A pot experiment was conducted to test the hypothesis that the Cd uptake by Chinese cabbage (Brassic...Rapeseed (Brassica campestris L.), a Cd-accumulating crop, is effective in reducing plant-available Cd from soil. A pot experiment was conducted to test the hypothesis that the Cd uptake by Chinese cabbage (Brassica pekinensis Rupr.) grown in rotation with rapeseed would be reduced due to the efficient removal of bioavailable Cd from soil solution by the rapeseed crops. The Cd removal by shoot for the rapeseed cultivar Zhucang Huazi ranged from 0.24% to 0.99% in natural Cd-contaminated soil (soil A) and from 0.63% to 1.23% in artificial Cd-contaminated soil (soil B) during the growth period of 4 7 weeks; whereas that for the rapeseed cultivar Chuanyou Ⅱ-93 ranged from 0.25% to 0.66% and from 0.38% to 1.02%, respectively. Chinese cabbage grown in the pots with soil A for five weeks after harvesting rapeseed exhibited a significantly lower Cd concentration compared to that grown in the control pots (uncropped with rapeseed). However, the rotation of rapeseed did not lower the Cd concentration of Chinese cabbage on soil B. Although an increase of Cd uptake was observed in the rapeseed cultivars with growth time, and the decrease of soil NH4OAc-extractable Cd was found only in the natural rather than artificial Cd-contaminated soil.展开更多
This study was designed to find out an optimised planting system of reducing non-point (source) pollution by analyzing the reasons and the factors of influence non-point pollution in farmland of Erhai Lake basin. Th...This study was designed to find out an optimised planting system of reducing non-point (source) pollution by analyzing the reasons and the factors of influence non-point pollution in farmland of Erhai Lake basin. The results showed that incomes, residual nitrogen in soil, and the loss of nitrogen in surface water in rice-garlic system were higher than those in rice-fava bean system. There were positive correlations between the nitrogen loss of farmland, nitrogen inputs, residual nitrogen in soil, and incomes of farmland. Economic benefits and environment benefits are both appropriate, if the area of rice-garlic system would be reduced to 53% and the area of rice-fava bean system increased to 36% of total cropping area in the investigated watershed. Adjustment of planting structure and introduction of reasonable rotation systems is considered an effective measure of controlling agricultural non-point pollution in watersheds of Erhai Lake.展开更多
Soil erosion on cropland is a major source of environmental problems in China ranging from the losses of a non-renewable resource and of nutrients at the source to contamination of downstream areas. Regional soil loss...Soil erosion on cropland is a major source of environmental problems in China ranging from the losses of a non-renewable resource and of nutrients at the source to contamination of downstream areas. Regional soil loss assessments using the Universal Soil Loss Equation (USLE) would supply a scientiifc basis for soil conservation planning. However, a lack of in-formation on the cover and management (C) factor for cropland, one of the most important factors in the USLE, has limited accurate regional assessments in China due to the large number of crops grown and their complicated rotation systems. In this study, single crop soil loss ratios (SLRs) were col ected and quantiifed for 10 primary crops from past studies or re-ports. The mean annual C values for 88 crop rotation systems in 12 cropping system regions were estimated based on the combined effects of single crop SLRs and the percentage of annual rainfal erosivity (R) during the corresponding periods for each system. The C values in different cropping system regions were compared and discussed. The results indicated that the SLRs of the 10 primary crops ranged from 0.15 to 0.74. The mean annual C value for al 88 crop rotation systems was 0.34, with a standard deviation of 0.12. The mean C values in the single, double and triple cropping zones were 0.37, 0.36 and 0.28, respectively, and the C value in the triple zone was signiifcantly different from those in single and double zones. The C values of dryland crop systems exhibited signiifcant differences in the single and triple cropping system regions but the differences in the double regions were not signiifcant. This study is the ifrst report of the C values of crop rotation systems in China at the national scale. It wil provide necessary and practical parameters for accurately assessing regional soil losses from cropland to guide soil conservation plans and to optimize crop rotation systems.展开更多
Soil microbial biomass nitrogen(MBN)contains the largest proportion of biologically active nitrogen(N)in soil,and is considered as a crucial participant in soil N cycling.Agronomic management practices such as crop ro...Soil microbial biomass nitrogen(MBN)contains the largest proportion of biologically active nitrogen(N)in soil,and is considered as a crucial participant in soil N cycling.Agronomic management practices such as crop rotation and monocropping systems,dramatically affect MBN in agroecosystems.However,the influence of crop rotation and monocropping in agroecosystems on MBN remains unclear.A meta-analysis based on 203 published studies was conducted to quantify the effect of crop rotation and mono-cropping systems on MBN under synthetic N fertilizer application.The analysis showed that crop rotation significantly stimulated the response ratio(RR)of MBN to N fertilization and this parameter reached the highest levels in upland-fallow rotations.Upland mono-cropping did not change the RR of MBN to N application,however,the RR of MBN to N application in paddy mono-cropping increased.The difference between crop rotation and mono-cropping systems appeared to be due to the various cropping management scenarios,and the pattern,rate and duration of N addition.Crop rotation systems led to a more positive effect on soil total N(TN)and a smaller reduction in soil pH than mono-cropping systems.The RR of MBN to N application was positively correlated with the RR of mineral N only in crop rotation systems and with the RR of soil pH only in mono-cropping systems.Combining the results of Random Forest(RF)model and structural equation model showed that the predominant driving factors of MBN changes in crop rotation systems were soil mineral N and TN,while in mono-cropping systems the main driving factor was soil pH.Overall,our study indicates that crop rotation can be an effective way to enhance MBN by improving soil N resources,which promote the resistance of MBN to low pH induced by intensive synthetic N fertilizer application.展开更多
Reduced tillage provides ecological and economic benefits to arable land on the Loess Plateau of China, where soil erosion has long been a serious problem and soil water availability is largely restricted. However, hi...Reduced tillage provides ecological and economic benefits to arable land on the Loess Plateau of China, where soil erosion has long been a serious problem and soil water availability is largely restricted. However, high abundances of weeds in reduced tillage systems cause significant yield losses. In this study, we explored the effects of no-tillage and stubble retention on the number and density of weeds and weed seeds in a 12-year maize-winter wheat-common vetch rotation on the Loess Plateau. Four treatments including conventional tillage, no-tillage, conventional tillage+stubble retention and no-tillage+stubble retention were designed and applied. We found that no-tillage increased the number of weed species and weed density in most of the crops, while stubble retention decreased weed density in maize and tended to suppress weeds in both no-tillage treatments(no-tillage and no-tillage+stubble retention). No-tillage led to an increase in the number of weed species in the weed seedbank and tended to increase seed density during the spring growth of winter wheat, but it decreased seed density during post-vetch fallow. Stubble retention tended to reduce seed density during the spring growth of winter wheat and post-vetch fallow. We concluded that no-tillage can promote weeds in the experimental crop rotation, while stubble retention suppresses weeds in untilled fields. The combined effects of stubble retention and no-tillage on weed suppression varied among the three crops. Based on these results, we recommend stubble retention in untilled legume-crop rotations on the Loess Plateau to improve the control of weeds.展开更多
Through collecting rhizosphere soil sample from a 30-year long-term fixed location test site that use“rice-ricerape”crop rotation(RRR)and“rice-rice-fallow”continuous cropping systems(RRF),this paper investigated e...Through collecting rhizosphere soil sample from a 30-year long-term fixed location test site that use“rice-ricerape”crop rotation(RRR)and“rice-rice-fallow”continuous cropping systems(RRF),this paper investigated effects of long-term crop rotation on physicochemical property and bacterial community of rhizosphere soil.Results showed that total nitrogen(TN),total phosphorus(TP)and available potassium(AK)contents in rhizosphere soil under long-term RRR were decreased by 28.09%,15.69%and 6.25%respectively.Alkali-hydrolyzable nitrogen(AN)and available phosphorus(AP)contents were 10.59%and 13.25%higher than those of soil in RRF respectively.Three soil samples collected during different periods also showed that RRR resulted in a lower rhizosphere soil pH than RRF.Clone library analysis revealed that significant difference in rhizosphere soil bacterial community was observed between RRR and RRF continuous cropping.Abundance ofα-Proteobacteria,β-Proteobacteria andγ-Proteobacteria were higher in rhizosphere soil of RRR compared to RRF.pH of rhizosphere soil was significantly correlated with Acidobacteria level,while total organic carbon(TOC)content was significantly correlated with Proteobacteria level.Long-term RRR enhanced conversion of N and P in rhizosphere soil,increased bio-availability to crop,and promoted diversity of soil bacterial community.Bacterial diversity in RRR could be ecological significance in maintaining soil fertility and functionality.展开更多
To investigate the effects of crop rotation on oilseed flax growth and yield,three season experiments were carried out in semi-arid area of Dingxi,Gansu from 2017 to 2019.The designed 6 rotational systems were FFF(fla...To investigate the effects of crop rotation on oilseed flax growth and yield,three season experiments were carried out in semi-arid area of Dingxi,Gansu from 2017 to 2019.The designed 6 rotational systems were FFF(flax-flaxflax),PFF(potato-flax-flax),WPF(wheat-potato-flax),FPF(flax-potato-flax),PWF(potato-wheat-flax)and FWF(flax-wheat-flax).Flax growth and yield investigation results showed that crop rotation increased leaf area duration,dry matter accumulation,seed nitrogen accumulation,water and nitrogen used efficiency,compared with continuous cropping of flax.Flaxseed yields in rotation systems were 22.23%–44.11%greater than those of continuous cropping system.Those in wheat and potato stubbles had higher tiller number(21.43%and 29.46%),more branches(14.24%and 6.97%),effective capsules(26.35%and 28.79%),higher water use efficiency(40.26%and 33.5%),higher nitrogen partial factor productivity(33.85%and 31.46%)and dry matter(41.98%and 25.47%)than those in oilseed flax stubble.It concluded that crop rotation system was an effective measure for oilseed flax productivity in semi-arid area by improving yield components and promoting biomass.展开更多
Plots under conservation tillage may require higher amount of potassium(K) application for augmenting productivity due to its stratification in upper soil layers, thereby reducing K supplying capacity in a medium or l...Plots under conservation tillage may require higher amount of potassium(K) application for augmenting productivity due to its stratification in upper soil layers, thereby reducing K supplying capacity in a medium or long-term period. To test this hypothesis, a field experiment was performed in 2002-2003 and 2006-2007 to study the effect of K and several crop rotations on yield, water productivity, carbon sequestration, grain quality, soil K status and economic benefits derived in maize(Zea mays L)/cowpea(Vigna sinensis L.) based cropping system under minimum tillage(MT). All crops recorded higher grain yield with a higher dose of K(120 kg K2 O ha-1) than recommended K(40 kg K2 O ha-1). The five years' average yield data showed that higher K application(120 kg K2 O ha-1) produced 16.4%(P<0.05)more maize equivalent yield. Cowpea based rotation yielded 14.2%(P<0.05) higher production than maize based rotation. The maximum enhancement was found in cowpea-mustard rotation. Relationship between yield and sustainable indices revealed that only agronomic efficiency of fertilizer input was significantly correlated with yield. Similarly, higherdoses of K application not only increased the water use efficiency(WUE) of all crops, but also reduced runoff and soil loss by 16.5% and 15.8% under maize and 23.3% and 19.7% under cowpea cover, respectively. This study also revealed that on an average 16.5% of left over carbon input contributed to soil organic carbon(SOC). Here, cowpea based rotation with the higher K application increased carbon sequestration in soil. Potassium fertilization also significantly improved the nutritional value of harvested grain by increasing the protein content for maize(by 9.5%) and cowpea(by 10.6%). The oil content in mustard increased by 5.0% and 6.0% after maize and cowpea, respectively. Net return also increased with the application of the higher K than recommended K and the trend was similar to yield. Hence, the present study demonstrated the potential yield and profit gains along with resource conservation in the Indian Himalayas due to annual additions of higher amount of K than the recommended dose. The impact of high K application was maximum in the cowpea-mustard rotation.展开更多
The results of the long-term investigations in dynamics for study of the conditions of taxonomic groups of microorganisms of irrigated gleyey-yellow soils of the subtropical zone under vegetable crops in rotation with...The results of the long-term investigations in dynamics for study of the conditions of taxonomic groups of microorganisms of irrigated gleyey-yellow soils of the subtropical zone under vegetable crops in rotation with the continuous growing of these cultures have been presented. The results of the researches study demonstrated an important vibration of the microorganisms quantity under growing cultures happens. The most quantity of microorganisms, consuming organic nitrogen is observed in irrigative gleyey-yellow soils of the humid subtropical zone. Intensity of mineralization of organic matters was lower in irrigative gleyey-yellow soils. A quantity of microorganisms was lower, but a coefficient of mineralization was higher under continuous cultures as compared the analogous soils under crop rotation. These data show that a type of the soil influence on the rhizosphere microflora insignificantly, while plant shows a significant effect on its quantity and compositions.展开更多
文摘Economic analysis of different diversified rotational cropping systems under Farmers' package/practices and improved package/practices was conducted in Birbhum district, West Bengal, located in the red and lateritic belt of lower Gangetic plain of eastern lndia. Diversified triple cropping systems (peanut-brinjal+brinjal, rice-potato-pumpkin, and cucumber-cabbage-basella) required higher cost for cultivation, but also produced higher rice equivalent yield, higher net return and higher return rupee1 invested in both management practices. Considering the resource-ability and risk-bearing capacity, and net return and return rupee^-1 (RPR) invested, these cropping systems can be recommended for resource-rich farmers. Rice-rapeseed-cowpea, rice-wheat-green gram and radish-tomato-amaranthus systems profitable. These cropping systems can be required less inputs for cultivation, were less risky, and economically viable and recommended for resource-poor farmers. Peanut-brinjal + brinjal-okra-chilli + chilli-cucumber-cabbage-basella system was the best among all the 3-year rotational systems in respect to RPR in both management practices. This rotational system will be suitable for resource-rich farmers. Vegetable-based rotational systems (ridge gourd-marigold-okra-black gram-pointed gourd + pointed gourd-radish-tomato-amaranthus) or rice-based rotational system (rice-wheat-green gram-rice-rapeseed-cowpea-rice-potato-pumpkin) also found to be suitable to increase the profitability and system sustainability. These cropping systems can be recommended for all groups of farmers.
文摘A field experiment was conducted from 2002-2005 on a sandy clay loam red and lateritic soil under irrigation in a farmer's field at Senkapur (Lat. 23°36.79′ N, Long. 87°38.14′E, Elev. 46 m AMSL), Birbhum, West Bengal, India. The objective was to provide the temporal changes of weed diversity and density, ecology, and impact of rotational cropping systems on different crops under double and triple cropping systems with improved (IP) and farmer's packages (FP). There was significantly higher weed density in FP than in IP on all years. Grasses and sedges were more in vegetable-based rotational systems; but grasses and broad leaf weeds (BLWs) were more in rice-based rotational systems. The lowest weed population was in vegetable-based systems. Grasses increased in rice-based systems but gradually decreased in vegetable-based systems in subsequent years. Sedge density was higher in vegetable- than in rice-based rotational systems. Density of BLWs was higher but that of sedges was lower in rice-based rotational systems as compared to vegetable-based systems. Density of BLWs gradually decreased in all rotational systems over the years in both packages. Density of weeds decreased gradually in subsequent years indicating the positive effect of rotational systems on suppression of weeds. Results indicate that the weed density can be reduced through judicious diversified rotational cropping systems. Peanut-brinjal+brinjal, okra-chilli+chilli and cucumber-cabbage-basella systems greatly reduced the weed density in both packages, and hence can be recommended for the lateritic belt of lower Gangetic plain of eastern India.
基金Supported by China Agricultural Industry Research System(CARS-15-38).
文摘In recent years,the area dedicated to cotton cultivation in eastern Henan Province has experienced a continuous decline.Developing efficient multi-cropping systems for cotton and increasing the multiple cropping index represent effective strategies to stabilize the cotton planting area and enhance the income of cotton farmers.This paper presents an overview of intercropping systems and the benefits associated with cotton rotation and intercropping practices.Specifically,it discusses the"early maturing cotton-wheat"rotation system,the"cotton-watermelon"intercropping system,the"cotton-Dutch bean"intercropping system,and the"early maturing cotton-peanut-garlic"intercropping system.
基金funded by the National Key Research and Development Program of China(2016YFD02003009-6 and 2016YFD0300806)the National Natural Science Foundation of China(41771327 and 41571219)the earmarked fund for China Agriculture Research System(CARS04)
文摘Certain agricultural management practices are known to affect the soil microbial community structure;however,knowledge of the response of the fungal community structure to the long-term continuous cropping and rotation of soybean,maize and wheat in the same agroecosystem is limited.We assessed the fungal abundance,composition and diversity among soybean rotation,maize rotation and wheat rotation systems and among long-term continuous cropping systems of soybean,maize and wheat as the effect of crop types on fungal community structure.We compared these fungal parameters of same crop between long-term crop rotation and continuous cropping systems as the effect of cropping systems on fungal community structure.The fungal abundance and composition were measured by quantitative real-time PCR and Illumina MiSeq sequencing.The results revealed that long-term continuous soybean cropping increased the soil fungal abundance compared with soybean rotation,and the fungal abundance was decreased in long-term continuous maize cropping compared with maize rotation.The long-term continuous soybean cropping also exhibited increased soil fungal diversity.The variation in the fungal community structure among the three crops was greater than that between long-term continuous cropping and rotation cropping.Mortierella,Guehomyces and Alternaria were the most important contributors to the dissimilarity of the fungal communities between the continuous cropping and rotation cropping of soybean,maize and wheat.There were 11 potential pathogen and 11 potential biocontrol fungi identified,and the relative abundance of most of the potential pathogenic fungi increased during the long-term continuous cropping of all three crops.The relative abundance of most biocontrol fungi increased in long-term continuous soybean cropping but decreased in long-term continuous maize and wheat cropping.Our results indicate that the response of the soil fungal community structure to long-term continuous cropping varies based upon crop types.
文摘A two-year on-farm study was carried out at Eglime in the moist savanna (MS) and Ouake in the dry savanna (DS) of Benin to evaluate the contribution of inoculation of dual-purpose soybean varieties to grain yield of upland NERICA rice fertilized with low N level. In 2005, four dual-purpose, promiscuous soybean varieties (cv. TGx1440-IE; TG×1448-2E; TG×1019-2EB; and TG×1844-18E), and a popular improved variety (cv. Jupiter) were sown in 12 farmer fields with and without Bradyrhizobium japonicum inoculation. There was also land which was left fallow that acted as the control. In 2006, upland interspecific rice (NERICA 1) was sown in all the plots and supplied with 15 kg N haL. Dry matter yield, N accumulation, and net N-balance were significantly enhanced by over 40% with inoculation of cv. TG× 1844-18E than non-inoculation in the DS in comparison to other cultivars. There were no significant effects of inoculation of previous soybean cultivars on soybean grain yield and on the succeeding NERICA rice yield. Averaged over inoculation, previous cv. TG× 1019-2EB plots supplied with only 15 kg N hal gave the highest grain yield, more than twice the yield of control plots in the DS, possibly because of significant production of higher tillers, panicles and harvest index than the other cultivars; and it could be recommended for upland rice-based system for NERICA production.
文摘To better understand the effects of direct sowing under mulch-based cropping system (DMC) in Burkina Faso’s cotton production systems, randomized blocks of Fisher experimental design were implemented at Farako-B<span style="white-space:nowrap;">a</span> research station from 2010 to 2019. The study was conducted on lixisoil to evaluate DMC effects on biomass production, crops yields and soil chemical properties in a maize and cotton rotation system associated with cover crop. Conventional tillage and direct seeding without cover crop were compared to DMC under <em>B</em>. <em>ruziziensis</em> (GERM. & EVRARD), DMC under <em>B</em>. <em>ruziziensis</em> + <em>M</em><em>.</em> <em>cochinchinensis</em> mulch and DMC under <em>C. juncea</em> (L.) mulch used in association with maize. Biomass production, crop yields and soil chemistry were evaluated. Results showed that over 10 years, no-till with or without a cover crop provided cotton seed and maize yields that were statistically equivalent to the tillage commonly practiced by farmers. Cover crop has allowed increasing the biomass production compared to Conventional Tillage and Direct Seeding. Maize yield has not varied significantly with the cover crop. After 10 years of maize and cotton rotation, the improvement raised from +27% to +38% for organic matter and from +15% to +29% for nitrogen with DMC including legumes such as <em>M. cochinchinensis</em> and <em>C. juncea</em> compared to Conventional Tillage on 0 - 5 cm depth. No significant differences were found on soil pH like P<sub>2</sub>O<sub>5</sub> and K<sub>2</sub>O content. Although DMC with <em>C. juncea</em> used as cover crop did not provide the best biomass production, it contributes to increase nitrogen and organic matter and presents better mineral balances in 10 years of rotation. The 5 - 10 cm and 10 - 20 cm were little influenced by DMC systems.
基金financially supported by the National Key Technology Research and Development Program of China(2021YFD1901001-08)the Key Scientific and Technological Project of Henan Provincial Education Department,China(232102111119)。
文摘Nitrogen(N)is a key factor in the positive response of cereal crops that follow leguminous crops when compared to gramineous crops in rotations,with the nonrecyclable rhizosphere-derived N playing an important role.However,quantitative assessments of differences in the N derived from rhizodeposition(NdfR)between legumes and gramineous crops are lacking,and comparative studies on their contributions to the subsequent cereals are scarce.In this study,we conducted a meta-analysis of NdfR from leguminous and gramineous crops based on 34 observations published worldwide.In addition,pot experiments were conducted to study the differences in the NdfR amounts,distributions and subsequent effects of two major wheat(Triticum aestivum L.)-preceding crops,corn(Zea mays L.)and soybean(Glycine max L.),by the cotton wick-labelling method in the main wheat-producing areas of China.The meta-analysis results showed that the NdfR of legumes was significantly greater by 138.93%compared to gramineous crops.In our pot experiment,the NdfR values from corn and soybean were 502.32 and 944.12 mg/pot,respectively,and soybean was also significantly higher than corn,accounting for 76.91 and 84.15%of the total belowground nitrogen of the plants,respectively.Moreover,in different soil particle sizes,NdfR was mainly enriched in the large macro-aggregates(>2 mm),followed by the small macro-aggregates(2–0.25 mm).The amount and proportion of NdfR in the macro-aggregates(>0.25 mm)of soybean were 3.48 and 1.66 times higher than those of corn,respectively,indicating the high utilization potential of soybean NdfR.Regarding the N accumulation of subsequent wheat,the contribution of soybean NdfR to wheat was approximately 3 times that of corn,accounting for 8.37 and 4.04%of the total N uptake of wheat,respectively.In conclusion,soybean NdfR is superior to corn in terms of the quantity and distribution ratio of soil macro-aggregates.In future field production,legume NdfR should be included in the nitrogen pool that can be absorbed and utilized by subsequent crops,and the role and potential of leguminous plants as nitrogen source providers in crop rotation systems should be fully utilized.
基金Jiangsu Water Science and Technology Project(2021081)。
文摘The rapid identification of planting patterns for major crops in a large irrigated district has vital importance for irrigation management,water fee collection,and crop yield estimation.In this study,the OTSU algorithm and Mean-Shift algorithm were employed to automatically determine threshold values for mapping two main rotated crop patterns at the pixel scale.A time series analysis was conducted to extract the spatial distribution of rice-wheat and wheat-maize rotations in the Chuanhang irrigation district from 2016 to 2020.The results demonstrate that both threshold segmentation algorithms are reliable in extracting the spatial distribution of the crops,with an overall accuracy exceeding 80%.Additionally,both Kappa coefficients surpass 0.7,indicating better performance by OTSU method.Over the period from 2016 to 2020,the area occupied by rice-wheat rotation cropping ranged from 12500 to 14400 hm 2;whereas wheat-maize rotation cropping exhibited smaller and more variable areas ranging from 19730 to 34070 hm 2.These findings highlight how remote sensing-based approaches can provide reliable support for rapidly and accurately identifying the spatial distribution of main crop rotation patterns within a large irrigation district.
文摘Conservation Agriculture(CA)covers more than 205 million hectares in the world.This made it possible to face and mitigate the challenges of climate change,reducing soil erosion and providing multiple ecosystem services.The first elementary factor influenced is the yield evaluation.It has a direct effect on farmers’choices for sustainable production.The present article records a review focused on wheat yield average positive change compared between conventional tillage(CT)and no tillage(NT)systems.The international database collected showed that NT is adaptable everywhere.The results of wheat yield differentiation showed the influence of crop rotation depending on stations located in different climatic zones.In more than 40 years of research,specialists have succeeded in demonstrating the importance of crop productivity like wheat.The whole integrates also experimentations where the initiation starts more than ten years.
基金Supported by the Special Fund for Agro-scientific Research in the Public Interest,China(201003014-6)the National Natural Science Foundation of China(31160413)~~
文摘[Objective] Nitrogen and phosphorus losses of surface runoff in various crop rotation systems in the north of Erhai Lake basin were studied with the objective to provide references for risk evaluation of environmental pollution and formulating countermeasures to control the nonpoint source pollution from agriculture.[Method] Water samples collected in four typical crop rotation systems distributed in seven towns(townships) in the north of Erhai Lake basin were investigated,as well as the fertilizer input,to explore the dynamic change of nitrogen and phosphorus content in surface water of farmland and ditch water,and the correlation between fertilizer input and the concentrations of nitrogen and phosphorus in the surface water of farmland and in the ditch water.[Result] The results showed that nitrogen loss in surface water of farmland in different crop rotation systems differed greatly,and the risk of nitrogen loss was 38% lower in broad bean-rice crop rotation than that in garlic-rice crop rotation.The water soluble nitrogen was the primary form of nitrogen loss.The content of water soluble nitrogen was significantly higher in garlic-rice crop rotation than that in the other rotation systems,and the concentrations of nitrogen in the surface water of farmland in different crop rotation systems followed the sequence below:garlic-rice crop rotationryegrass-rice crop rotationbroad bean-rice crop rotationrape-rice crop rotation.The loss of phosphorus in the surface water of farmland was relatively low and phosphorus combined with silt was the primary form for phosphorus loss.There was no significant difference of the loss of various forms of phosphorus in different crop rotation systems.The contents of total nitrogen and total phosphorus in the surface water of farmland were higher than that in ditch water,with increasing rates of total nitrogen and total phosphorus in ditch water of 72% and 82%,respectively.Topdressing was the critical reason for the high concentrations of nitrogen and phosphorus in the surface water,which also caused the increasing load to the ditch water.[Conclusion] Both the nitrogen and phosphorus loss were the highest in garlic-rice crop rotation.Reasonable crop rotation systems should be established based on both the environmental and economic benefits.This study provided references for controlling the nonpoint source pollution of farmland and improving the water quality of Erhai Lake.
基金supported by the National Natural Science Foundation of China (40971261)the Special Fund for Argo-Scientific Reserch in the Public Interest,China (200903015).
文摘Pot experiments were conducted under greenhouse condition to investigate whether Cd and Pb uptake by rice could be reduced when it was rotated with oilseed rape and compost application.The results showed that the rice grown after oilseed rape had significantly lower Cd and Pb concentrations in both straw and grains.Cd and Pb concentrations in the grains of the rice rotated with oilseed rape decreased by approximately 46-80% and 17-86%,respectively,although the Cd and Pb removal by oilseed rape ranged only from 2.39-3.67 and 0.032-0.13% of the total content in soil.Compost amendment also decreased the bioavailability of Cd and Pb in the soil and reduced Cd and Pb uptake by oilseed rapes and rice.The concentrations of Cd and Pb significantly decreased in the exchangeable and carbonate fractions and Pb concentration decreased in the organic matter and sulfide fractions in the contaminated soil after planting oilseed rapes.
基金Project supported by the National Key Technologies R&D Program of China (No. 2006BAD17B04)the National High Technology Research and Development Program (863 Program) of China (No. 2007AA061001)the National Natural Science Foundation of China (No. 30471005)
文摘Rapeseed (Brassica campestris L.), a Cd-accumulating crop, is effective in reducing plant-available Cd from soil. A pot experiment was conducted to test the hypothesis that the Cd uptake by Chinese cabbage (Brassica pekinensis Rupr.) grown in rotation with rapeseed would be reduced due to the efficient removal of bioavailable Cd from soil solution by the rapeseed crops. The Cd removal by shoot for the rapeseed cultivar Zhucang Huazi ranged from 0.24% to 0.99% in natural Cd-contaminated soil (soil A) and from 0.63% to 1.23% in artificial Cd-contaminated soil (soil B) during the growth period of 4 7 weeks; whereas that for the rapeseed cultivar Chuanyou Ⅱ-93 ranged from 0.25% to 0.66% and from 0.38% to 1.02%, respectively. Chinese cabbage grown in the pots with soil A for five weeks after harvesting rapeseed exhibited a significantly lower Cd concentration compared to that grown in the control pots (uncropped with rapeseed). However, the rotation of rapeseed did not lower the Cd concentration of Chinese cabbage on soil B. Although an increase of Cd uptake was observed in the rapeseed cultivars with growth time, and the decrease of soil NH4OAc-extractable Cd was found only in the natural rather than artificial Cd-contaminated soil.
基金funded by the National Water Special Program of China during 11th Five-Year Plan period(2008ZX07105-002)
文摘This study was designed to find out an optimised planting system of reducing non-point (source) pollution by analyzing the reasons and the factors of influence non-point pollution in farmland of Erhai Lake basin. The results showed that incomes, residual nitrogen in soil, and the loss of nitrogen in surface water in rice-garlic system were higher than those in rice-fava bean system. There were positive correlations between the nitrogen loss of farmland, nitrogen inputs, residual nitrogen in soil, and incomes of farmland. Economic benefits and environment benefits are both appropriate, if the area of rice-garlic system would be reduced to 53% and the area of rice-fava bean system increased to 36% of total cropping area in the investigated watershed. Adjustment of planting structure and introduction of reasonable rotation systems is considered an effective measure of controlling agricultural non-point pollution in watersheds of Erhai Lake.
基金financially supported by the Fund for Creative Research Groups of National Natural Science Foundation of China (41321001)
文摘Soil erosion on cropland is a major source of environmental problems in China ranging from the losses of a non-renewable resource and of nutrients at the source to contamination of downstream areas. Regional soil loss assessments using the Universal Soil Loss Equation (USLE) would supply a scientiifc basis for soil conservation planning. However, a lack of in-formation on the cover and management (C) factor for cropland, one of the most important factors in the USLE, has limited accurate regional assessments in China due to the large number of crops grown and their complicated rotation systems. In this study, single crop soil loss ratios (SLRs) were col ected and quantiifed for 10 primary crops from past studies or re-ports. The mean annual C values for 88 crop rotation systems in 12 cropping system regions were estimated based on the combined effects of single crop SLRs and the percentage of annual rainfal erosivity (R) during the corresponding periods for each system. The C values in different cropping system regions were compared and discussed. The results indicated that the SLRs of the 10 primary crops ranged from 0.15 to 0.74. The mean annual C value for al 88 crop rotation systems was 0.34, with a standard deviation of 0.12. The mean C values in the single, double and triple cropping zones were 0.37, 0.36 and 0.28, respectively, and the C value in the triple zone was signiifcantly different from those in single and double zones. The C values of dryland crop systems exhibited signiifcant differences in the single and triple cropping system regions but the differences in the double regions were not signiifcant. This study is the ifrst report of the C values of crop rotation systems in China at the national scale. It wil provide necessary and practical parameters for accurately assessing regional soil losses from cropland to guide soil conservation plans and to optimize crop rotation systems.
基金Financial supports were received from the Agro-scientific Research in the Public Interest of China(201503122)。
文摘Soil microbial biomass nitrogen(MBN)contains the largest proportion of biologically active nitrogen(N)in soil,and is considered as a crucial participant in soil N cycling.Agronomic management practices such as crop rotation and monocropping systems,dramatically affect MBN in agroecosystems.However,the influence of crop rotation and monocropping in agroecosystems on MBN remains unclear.A meta-analysis based on 203 published studies was conducted to quantify the effect of crop rotation and mono-cropping systems on MBN under synthetic N fertilizer application.The analysis showed that crop rotation significantly stimulated the response ratio(RR)of MBN to N fertilization and this parameter reached the highest levels in upland-fallow rotations.Upland mono-cropping did not change the RR of MBN to N application,however,the RR of MBN to N application in paddy mono-cropping increased.The difference between crop rotation and mono-cropping systems appeared to be due to the various cropping management scenarios,and the pattern,rate and duration of N addition.Crop rotation systems led to a more positive effect on soil total N(TN)and a smaller reduction in soil pH than mono-cropping systems.The RR of MBN to N application was positively correlated with the RR of mineral N only in crop rotation systems and with the RR of soil pH only in mono-cropping systems.Combining the results of Random Forest(RF)model and structural equation model showed that the predominant driving factors of MBN changes in crop rotation systems were soil mineral N and TN,while in mono-cropping systems the main driving factor was soil pH.Overall,our study indicates that crop rotation can be an effective way to enhance MBN by improving soil N resources,which promote the resistance of MBN to low pH induced by intensive synthetic N fertilizer application.
基金supported by the National Natural Science Foundation of China(31572460)the Fundamental Research Funds for the Central Universities(lzujbky-2017-ot01)the National Key Research and Development Program of China(2016YFC0400302)
文摘Reduced tillage provides ecological and economic benefits to arable land on the Loess Plateau of China, where soil erosion has long been a serious problem and soil water availability is largely restricted. However, high abundances of weeds in reduced tillage systems cause significant yield losses. In this study, we explored the effects of no-tillage and stubble retention on the number and density of weeds and weed seeds in a 12-year maize-winter wheat-common vetch rotation on the Loess Plateau. Four treatments including conventional tillage, no-tillage, conventional tillage+stubble retention and no-tillage+stubble retention were designed and applied. We found that no-tillage increased the number of weed species and weed density in most of the crops, while stubble retention decreased weed density in maize and tended to suppress weeds in both no-tillage treatments(no-tillage and no-tillage+stubble retention). No-tillage led to an increase in the number of weed species in the weed seedbank and tended to increase seed density during the spring growth of winter wheat, but it decreased seed density during post-vetch fallow. Stubble retention tended to reduce seed density during the spring growth of winter wheat and post-vetch fallow. We concluded that no-tillage can promote weeds in the experimental crop rotation, while stubble retention suppresses weeds in untilled fields. The combined effects of stubble retention and no-tillage on weed suppression varied among the three crops. Based on these results, we recommend stubble retention in untilled legume-crop rotations on the Loess Plateau to improve the control of weeds.
基金supported by the National Natural Science Foundation of China(No.31572203).
文摘Through collecting rhizosphere soil sample from a 30-year long-term fixed location test site that use“rice-ricerape”crop rotation(RRR)and“rice-rice-fallow”continuous cropping systems(RRF),this paper investigated effects of long-term crop rotation on physicochemical property and bacterial community of rhizosphere soil.Results showed that total nitrogen(TN),total phosphorus(TP)and available potassium(AK)contents in rhizosphere soil under long-term RRR were decreased by 28.09%,15.69%and 6.25%respectively.Alkali-hydrolyzable nitrogen(AN)and available phosphorus(AP)contents were 10.59%and 13.25%higher than those of soil in RRF respectively.Three soil samples collected during different periods also showed that RRR resulted in a lower rhizosphere soil pH than RRF.Clone library analysis revealed that significant difference in rhizosphere soil bacterial community was observed between RRR and RRF continuous cropping.Abundance ofα-Proteobacteria,β-Proteobacteria andγ-Proteobacteria were higher in rhizosphere soil of RRR compared to RRF.pH of rhizosphere soil was significantly correlated with Acidobacteria level,while total organic carbon(TOC)content was significantly correlated with Proteobacteria level.Long-term RRR enhanced conversion of N and P in rhizosphere soil,increased bio-availability to crop,and promoted diversity of soil bacterial community.Bacterial diversity in RRR could be ecological significance in maintaining soil fertility and functionality.
基金This study was supported by Gansu Provincial Key Laboratory of Aridland Crop Science of Gansu Agricultural University(GSCS-2020-Z6)the China Agriculture Research System of Construct Special(CARS-14-1-16)+1 种基金the National Natural Science Programs of China(31660368,32060437)the Fuxi Outstanding Talent Cultivation Plan of Gansu Agriculture University(Gaufx-02J05).I am very grateful to all my working partners.
文摘To investigate the effects of crop rotation on oilseed flax growth and yield,three season experiments were carried out in semi-arid area of Dingxi,Gansu from 2017 to 2019.The designed 6 rotational systems were FFF(flax-flaxflax),PFF(potato-flax-flax),WPF(wheat-potato-flax),FPF(flax-potato-flax),PWF(potato-wheat-flax)and FWF(flax-wheat-flax).Flax growth and yield investigation results showed that crop rotation increased leaf area duration,dry matter accumulation,seed nitrogen accumulation,water and nitrogen used efficiency,compared with continuous cropping of flax.Flaxseed yields in rotation systems were 22.23%–44.11%greater than those of continuous cropping system.Those in wheat and potato stubbles had higher tiller number(21.43%and 29.46%),more branches(14.24%and 6.97%),effective capsules(26.35%and 28.79%),higher water use efficiency(40.26%and 33.5%),higher nitrogen partial factor productivity(33.85%and 31.46%)and dry matter(41.98%and 25.47%)than those in oilseed flax stubble.It concluded that crop rotation system was an effective measure for oilseed flax productivity in semi-arid area by improving yield components and promoting biomass.
基金funded by the Indian Council of Agricultural Research(ICAR),New Delhi
文摘Plots under conservation tillage may require higher amount of potassium(K) application for augmenting productivity due to its stratification in upper soil layers, thereby reducing K supplying capacity in a medium or long-term period. To test this hypothesis, a field experiment was performed in 2002-2003 and 2006-2007 to study the effect of K and several crop rotations on yield, water productivity, carbon sequestration, grain quality, soil K status and economic benefits derived in maize(Zea mays L)/cowpea(Vigna sinensis L.) based cropping system under minimum tillage(MT). All crops recorded higher grain yield with a higher dose of K(120 kg K2 O ha-1) than recommended K(40 kg K2 O ha-1). The five years' average yield data showed that higher K application(120 kg K2 O ha-1) produced 16.4%(P<0.05)more maize equivalent yield. Cowpea based rotation yielded 14.2%(P<0.05) higher production than maize based rotation. The maximum enhancement was found in cowpea-mustard rotation. Relationship between yield and sustainable indices revealed that only agronomic efficiency of fertilizer input was significantly correlated with yield. Similarly, higherdoses of K application not only increased the water use efficiency(WUE) of all crops, but also reduced runoff and soil loss by 16.5% and 15.8% under maize and 23.3% and 19.7% under cowpea cover, respectively. This study also revealed that on an average 16.5% of left over carbon input contributed to soil organic carbon(SOC). Here, cowpea based rotation with the higher K application increased carbon sequestration in soil. Potassium fertilization also significantly improved the nutritional value of harvested grain by increasing the protein content for maize(by 9.5%) and cowpea(by 10.6%). The oil content in mustard increased by 5.0% and 6.0% after maize and cowpea, respectively. Net return also increased with the application of the higher K than recommended K and the trend was similar to yield. Hence, the present study demonstrated the potential yield and profit gains along with resource conservation in the Indian Himalayas due to annual additions of higher amount of K than the recommended dose. The impact of high K application was maximum in the cowpea-mustard rotation.
文摘The results of the long-term investigations in dynamics for study of the conditions of taxonomic groups of microorganisms of irrigated gleyey-yellow soils of the subtropical zone under vegetable crops in rotation with the continuous growing of these cultures have been presented. The results of the researches study demonstrated an important vibration of the microorganisms quantity under growing cultures happens. The most quantity of microorganisms, consuming organic nitrogen is observed in irrigative gleyey-yellow soils of the humid subtropical zone. Intensity of mineralization of organic matters was lower in irrigative gleyey-yellow soils. A quantity of microorganisms was lower, but a coefficient of mineralization was higher under continuous cultures as compared the analogous soils under crop rotation. These data show that a type of the soil influence on the rhizosphere microflora insignificantly, while plant shows a significant effect on its quantity and compositions.