A power saving frequency difference controlling method was introduced by the double inverter and motor experiment system.The characters of the system under differ- ent loads were investigated.The theoretical analysis ...A power saving frequency difference controlling method was introduced by the double inverter and motor experiment system.The characters of the system under differ- ent loads were investigated.The theoretical analysis and experiment results show the frequency difference method is a ideal power saving speed regulation method for the dou- ble inverter and motor system.The experiment system is simply structured,convenient to operate and provides a new way of character testing for frequency conversion speed regulation.展开更多
The work-class remotely-operated-underwater-vehicles(ROVs) are mainly driven by hydraulic propulsion system,and the effeciency of hydraulic propulsion system is an important performance index of ROVs.However,the eff...The work-class remotely-operated-underwater-vehicles(ROVs) are mainly driven by hydraulic propulsion system,and the effeciency of hydraulic propulsion system is an important performance index of ROVs.However,the efficiency of traditional hydraulic propulsion system controlled by throttle valves is too low.Therefore,in this paper,for small and medium ROVs,a novel propulsion system with higher efficiency based on high speed on/off valve control hydraulic propeller is proposed.To solve the conflict between large flow rate and high frequency response performance,a two-stage high speed on/off valve-motor unit with large flow rate and high response speed simultaneously is developed.Through theoretical analysis,an effective fluctuation control method and a novel pulse-width-pulse-frequency-modulation(PWPFM) are introduced to solve the conflict among inherently fluctuation,valve dynamic performance and system efficiency.A simulation model is established to evaluate the system performance.To prove the advantage of system in energy saving,and test the dynamic control performance of high speed on/off valve control propeller,a test setup is developed and a series of comparative experiments is completed.The smimulation and experiment results show that the two-stage high speed on/off valve has an excellent dynamic response performance,and can be used to realize high accuracy speed control.The experiment results prove that the new propulsion system has much more advantages than the traditional throttle speed regulation system in energy saving.The lowest efficiency is more than 40%.The application results on a ROV indicate that the high speed on/off valve control propeller system has good dynamic and steady-state control performances.Its transient time is only about 1 s-1.5 s,and steady-state error is less than 5%.Meanwhile,the speed fluctuation is small,and the smooth propeller speed control effect is obtained.On the premise of good propeller speed control performance,the proposed high speed on/off valve control propeller can improve the effeciency of ROV propulsion system significantly,and provides another attractive ROV propulsion system choice for engineers.展开更多
Dust collection systems represent a significant portion of a wood product manufacturer’s total electricity use. The system fan works against the static pressure of the entire system—the blast gates, the ductwork, an...Dust collection systems represent a significant portion of a wood product manufacturer’s total electricity use. The system fan works against the static pressure of the entire system—the blast gates, the ductwork, and the upstream or downstream cyclone and/or baghouse. A poor system design (e.g., sharp elbows or undersized ductwork) increases the total amount of static pressure in the system, the fan’s performance curve shifts, increasing the total brake horsepower required by the fan (up to the maximum point on the curve). Additionally, system designers may oversize a dust collection system to ensure adequate dust capture and transport, either to accommodate system expansion or simply to be conservative. Since theoretical fan energy use increases with its velocity cubed, this can be an expensive safety net. This paper presents a comprehensive literature review about industrial cyclone dust collectors energy saving in relation to management, technologies, and policies. Energy-saving technologies like high-efficiency motors (HEMs), variable-speed drives (VSDs), leak detection, and pressure drop reduction have all been examined. Based on energy saving technologies results, it has been found that in the industrial sectors, a sizeable amount of electric energy, and utility bill can be saved using these technologies. Finally, various energy-saving policies were reviewed.展开更多
文摘A power saving frequency difference controlling method was introduced by the double inverter and motor experiment system.The characters of the system under differ- ent loads were investigated.The theoretical analysis and experiment results show the frequency difference method is a ideal power saving speed regulation method for the dou- ble inverter and motor system.The experiment system is simply structured,convenient to operate and provides a new way of character testing for frequency conversion speed regulation.
基金supported by National Hi-tech Research and Development Program of China (863 Program, Grant No.2006AA09Z215)
文摘The work-class remotely-operated-underwater-vehicles(ROVs) are mainly driven by hydraulic propulsion system,and the effeciency of hydraulic propulsion system is an important performance index of ROVs.However,the efficiency of traditional hydraulic propulsion system controlled by throttle valves is too low.Therefore,in this paper,for small and medium ROVs,a novel propulsion system with higher efficiency based on high speed on/off valve control hydraulic propeller is proposed.To solve the conflict between large flow rate and high frequency response performance,a two-stage high speed on/off valve-motor unit with large flow rate and high response speed simultaneously is developed.Through theoretical analysis,an effective fluctuation control method and a novel pulse-width-pulse-frequency-modulation(PWPFM) are introduced to solve the conflict among inherently fluctuation,valve dynamic performance and system efficiency.A simulation model is established to evaluate the system performance.To prove the advantage of system in energy saving,and test the dynamic control performance of high speed on/off valve control propeller,a test setup is developed and a series of comparative experiments is completed.The smimulation and experiment results show that the two-stage high speed on/off valve has an excellent dynamic response performance,and can be used to realize high accuracy speed control.The experiment results prove that the new propulsion system has much more advantages than the traditional throttle speed regulation system in energy saving.The lowest efficiency is more than 40%.The application results on a ROV indicate that the high speed on/off valve control propeller system has good dynamic and steady-state control performances.Its transient time is only about 1 s-1.5 s,and steady-state error is less than 5%.Meanwhile,the speed fluctuation is small,and the smooth propeller speed control effect is obtained.On the premise of good propeller speed control performance,the proposed high speed on/off valve control propeller can improve the effeciency of ROV propulsion system significantly,and provides another attractive ROV propulsion system choice for engineers.
文摘Dust collection systems represent a significant portion of a wood product manufacturer’s total electricity use. The system fan works against the static pressure of the entire system—the blast gates, the ductwork, and the upstream or downstream cyclone and/or baghouse. A poor system design (e.g., sharp elbows or undersized ductwork) increases the total amount of static pressure in the system, the fan’s performance curve shifts, increasing the total brake horsepower required by the fan (up to the maximum point on the curve). Additionally, system designers may oversize a dust collection system to ensure adequate dust capture and transport, either to accommodate system expansion or simply to be conservative. Since theoretical fan energy use increases with its velocity cubed, this can be an expensive safety net. This paper presents a comprehensive literature review about industrial cyclone dust collectors energy saving in relation to management, technologies, and policies. Energy-saving technologies like high-efficiency motors (HEMs), variable-speed drives (VSDs), leak detection, and pressure drop reduction have all been examined. Based on energy saving technologies results, it has been found that in the industrial sectors, a sizeable amount of electric energy, and utility bill can be saved using these technologies. Finally, various energy-saving policies were reviewed.