The paper presents an analytical study of the helicopter rotor vibratory loadreduction design optimization with aeroelastic stability constraints. The composite rotor blade ismodeled by beam type finite elements, and ...The paper presents an analytical study of the helicopter rotor vibratory loadreduction design optimization with aeroelastic stability constraints. The composite rotor blade ismodeled by beam type finite elements, and warping deformation is taken into consideration for2-dimension analysis, while the one-dimension nonlinear differential equations of blade motion areformulated via Hamilton's principle. The rotor hub vibratory loads is chosen as the objectivefunction, while rotor blade section construction parameter, composite material ply structure andblade tip swept angle as the design variables, and au-torotation inertia, natural frequency andaeroelastic stability as the constraints. A 3-bladed rotor is designed, as an example, based on thevibratory hub load reduction optimization process with swept tip angle and composite material. Thecalculating results show a 24. 9 percent-33 percent reduction of 3/rev hub loads in comparison withthe base-line rotor.展开更多
A control system aims at vibration reduction in a two-span rotor system with two shear mode magnetorheological (MRF) dampers is designed. A finite element model of the MRF damper- rotor system is built and used to a...A control system aims at vibration reduction in a two-span rotor system with two shear mode magnetorheological (MRF) dampers is designed. A finite element model of the MRF damper- rotor system is built and used to analyze the rotor vibration characteristics. Based on Hooke and Jeeves algorithm and the numerical simulation analysis, an optimal appropriate controller is proposed and designed. Experimental results show that rotor vibration caused by unbalance is well controlled ( first critical speed region 37% , second critical speed region 42% ). To reflect advantages of optimi- zing strategy presented and validate the intelligent optimization control technology, detailed experi- ments were developed on a two-span rotor-vibration-control platform. The influence on accuracy, rapidity and stability of optimizing control for rotor vibration are analyzed. It provides a powerful technical support for the extension and application in target and control for shafting vibration.展开更多
文摘The paper presents an analytical study of the helicopter rotor vibratory loadreduction design optimization with aeroelastic stability constraints. The composite rotor blade ismodeled by beam type finite elements, and warping deformation is taken into consideration for2-dimension analysis, while the one-dimension nonlinear differential equations of blade motion areformulated via Hamilton's principle. The rotor hub vibratory loads is chosen as the objectivefunction, while rotor blade section construction parameter, composite material ply structure andblade tip swept angle as the design variables, and au-torotation inertia, natural frequency andaeroelastic stability as the constraints. A 3-bladed rotor is designed, as an example, based on thevibratory hub load reduction optimization process with swept tip angle and composite material. Thecalculating results show a 24. 9 percent-33 percent reduction of 3/rev hub loads in comparison withthe base-line rotor.
基金Supported by the National Program on Key Basic Research Project(973Program)(2012CB026000)Ph.D Programs Foundation of Ministry of Education of China(20110010110009)
文摘A control system aims at vibration reduction in a two-span rotor system with two shear mode magnetorheological (MRF) dampers is designed. A finite element model of the MRF damper- rotor system is built and used to analyze the rotor vibration characteristics. Based on Hooke and Jeeves algorithm and the numerical simulation analysis, an optimal appropriate controller is proposed and designed. Experimental results show that rotor vibration caused by unbalance is well controlled ( first critical speed region 37% , second critical speed region 42% ). To reflect advantages of optimi- zing strategy presented and validate the intelligent optimization control technology, detailed experi- ments were developed on a two-span rotor-vibration-control platform. The influence on accuracy, rapidity and stability of optimizing control for rotor vibration are analyzed. It provides a powerful technical support for the extension and application in target and control for shafting vibration.