The SiCp/Al-alloy composite front brake rotors designed for Shanghai Santana cars were prepared by semi-solid stirring+liquid forging process. The composite brake rotors were subjected to dynamometer tests on a SCHENC...The SiCp/Al-alloy composite front brake rotors designed for Shanghai Santana cars were prepared by semi-solid stirring+liquid forging process. The composite brake rotors were subjected to dynamometer tests on a SCHENCK brake testing system, referring to TL110 standard of VOLKSWAGEN Co. The friction coefficient and thermal response during fade testing and the wear performance of the composite rotors were studied as the functions of various parameters such as braking pressures, initial speeds, initial temperatures, torque and decelerations, and were compared with those of conventional cast iron rotors. The results show that the properties of the composite rotors can achieve the requirements of commercial cast iron rotors. The results also show that the friction coefficients of the composite rotors under different braking conditions are within the deviation band specified by the TL110 standard, and the temperature rise of composite rotors is lower than that of cast iron rotors at the end of each fade stop. The wear resistance of composite rotors is higher than that of cast iron rotors. The friction mechanism and wear mechanism were analyzed.展开更多
文摘The SiCp/Al-alloy composite front brake rotors designed for Shanghai Santana cars were prepared by semi-solid stirring+liquid forging process. The composite brake rotors were subjected to dynamometer tests on a SCHENCK brake testing system, referring to TL110 standard of VOLKSWAGEN Co. The friction coefficient and thermal response during fade testing and the wear performance of the composite rotors were studied as the functions of various parameters such as braking pressures, initial speeds, initial temperatures, torque and decelerations, and were compared with those of conventional cast iron rotors. The results show that the properties of the composite rotors can achieve the requirements of commercial cast iron rotors. The results also show that the friction coefficients of the composite rotors under different braking conditions are within the deviation band specified by the TL110 standard, and the temperature rise of composite rotors is lower than that of cast iron rotors at the end of each fade stop. The wear resistance of composite rotors is higher than that of cast iron rotors. The friction mechanism and wear mechanism were analyzed.