The key and bottleneck of research on the tip-jet rotor compound helicopter lies in the power system. Computational Fluid Dynamics (CFD) was used to numerically simulate the gas generator and rotor inner passage of th...The key and bottleneck of research on the tip-jet rotor compound helicopter lies in the power system. Computational Fluid Dynamics (CFD) was used to numerically simulate the gas generator and rotor inner passage of the tip-jet rotor composite power system, studying the effects of intake mode, inner cavity structure, propellant components, and injection amount on the characteristics of the composite power system. The results show that when a single high-temperature exhaust gas enters, the gas generator outlet fluid is uneven and asymmetric;when two-way high-temperature exhaust gas enters, the outlet temperature of the gas generator with a tilted inlet is more uniform than that with a vertical inlet;adding an inner cavity improves the temperature and velocity distribution of the gas generator's internal flow field;increasing the energy of the propellant is beneficial for improving the available moment.展开更多
A novel air-powered twin-rotor piston engine(ATPE) utilizing a differential velocity driving mechanism to achieve a high output torque was proposed.The ATPE had eight separated rotary cylinders which can dynamically e...A novel air-powered twin-rotor piston engine(ATPE) utilizing a differential velocity driving mechanism to achieve a high output torque was proposed.The ATPE had eight separated rotary cylinders which can dynamically enlarge the engine displacement as a result of the special driving mechanism,which was named dynamic volume expansion.The mathematical model of ATPE comprising a dynamic model and a thermodynamic model was established under the assumption of no mechanical friction.The model was numerically simulated in Matlab.The results show that shortage of low output torque confusing traditional air-powered engines can be overcome.The average output torque sharply increases to 100 N·m,which is about three times that of traditional air-powered engines with equal cylinder displacement under the pressure of 0.6 MPa at 480 r/min.ATPE can be used to drive vehicles directly without transmission box,therefore the energy transfer efficiency of ATPE can be increased.Furthermore,benefitting from the novel gas distribution system,the engine shows an ability in self-adjusting under different loads.The arrangements of air ports automatically adjust the open interval of air ports according to the load,which may simplify the speed control system.展开更多
The aspiration of all wind turbine designers is to attain Betz’s upper limit, which represents the highest efficiency in wind energy extraction. Majority of working turbines operate slightly below this limit with an ...The aspiration of all wind turbine designers is to attain Betz’s upper limit, which represents the highest efficiency in wind energy extraction. Majority of working turbines operate slightly below this limit with an exception of a few operating in wind tunnels. This study proposes for a comprehensive reevaluation of Betz’s derivation, aiming to establish the gap between a theoretical power limit and a practical limit for realization. There are two common expressions for power coefficient giving the same optimal value of 59%, but they generate different power-coefficient curves when plotted against velocity ratios. This paper presents a new method being referred as “Direct Multiplication Fractional Change” (DMFC) for deriving power-coefficient curves in wind energy, and compares its generated curve with established models. Discrepancies in power-coefficient expressions are identified and harmonized. Three approaches, namely EVAM, LVM, and DMFCM, were used for the numerical derivation of cp in the study, with their evaluation summarized in a table. The study collaborates its findings with a formulated velocity-distance curve, commonly presented as a hypothetical velocity profile in some publications. The results from DMFCM indicate two distinct maxima for the power coefficient. On the front side of the disc, a maximum of 0.5 is achievable in practice, although it is not the highest theoretically. On the rear side, a theoretical maximum of 0.59 is observed, but this value is not attainable in practice. These maxima are separated by their positions along the line of flow relative to the disc. However, this approximation is limited to a streamlined flow model of the rotor disc.展开更多
Small-scale vertical axis wind turbine (VAWT) rotor is developed for use in areas lacking adequate energy infrastructure. The materials and methods of construction are selected to minimize cost as much as possible. Th...Small-scale vertical axis wind turbine (VAWT) rotor is developed for use in areas lacking adequate energy infrastructure. The materials and methods of construction are selected to minimize cost as much as possible. The paper describes the design of different kinds of vertical axis wind turbine rotors having different number of blades and twist angle. The aim of the work is to study the influence of the different designs on rotational speed and power of rotor in different wind speed.展开更多
This study presents a comprehensive impact analysis of the rotor angle stability of a proposed international connection between the Philippines and Sabah,Malaysia,as part of the Association of Southeast Asian Nations(...This study presents a comprehensive impact analysis of the rotor angle stability of a proposed international connection between the Philippines and Sabah,Malaysia,as part of the Association of Southeast Asian Nations(ASEAN)Power Grid.This study focuses on modeling and evaluating the dynamic performance of the interconnected system,considering the high penetration of renewable sources.Power flow,small signal stability,and transient stability analyses were conducted to assess the ability of the proposed linked power system models to withstand small and large disturbances,utilizing the Power Systems Analysis Toolbox(PSAT)software in MATLAB.All components used in the model are documented in the PSAT library.Currently,there is a lack of publicly available studies regarding the implementation of this specific system.Additionally,the study investigates the behavior of a system with a high penetration of renewable energy sources.Based on the findings,this study concludes that a system is generally stable when interconnection is realized,given its appropriate location and dynamic component parameters.Furthermore,the critical eigenvalues of the system also exhibited improvement as the renewable energy sources were augmented.展开更多
This paper presents a PFCVF (Power Factor Correction) rectifier that uses a variable frequency source for alternators for electric and hybrid vehicles application. In such application, the frequency of the signal in t...This paper presents a PFCVF (Power Factor Correction) rectifier that uses a variable frequency source for alternators for electric and hybrid vehicles application. In such application, the frequency of the signal in the alternator changes according to the vehicle speed, more over the loading effect on the alternator introduces harmonic currents and increases the alternator apparent power requirements. To overcome these problems and aiming more stability and better design of the alternator, a new third harmonic injection technique is proposed. This technique allows to preserve a good THD (Total Harmonic Distortion) of the input source at any frequency and to decrease losses in semiconductors switches, thereby allowing more stability and reducing the apparent power requirements. A comparative study between the standard and the new technique is made and highlights the effectiveness of the new design. A detailed analysis of the proposed topology is presented and simulations as well as experimental results are shown.展开更多
文摘The key and bottleneck of research on the tip-jet rotor compound helicopter lies in the power system. Computational Fluid Dynamics (CFD) was used to numerically simulate the gas generator and rotor inner passage of the tip-jet rotor composite power system, studying the effects of intake mode, inner cavity structure, propellant components, and injection amount on the characteristics of the composite power system. The results show that when a single high-temperature exhaust gas enters, the gas generator outlet fluid is uneven and asymmetric;when two-way high-temperature exhaust gas enters, the outlet temperature of the gas generator with a tilted inlet is more uniform than that with a vertical inlet;adding an inner cavity improves the temperature and velocity distribution of the gas generator's internal flow field;increasing the energy of the propellant is beneficial for improving the available moment.
基金Projects(51105365,51475464)supported by the National Natural Science Foundation of China
文摘A novel air-powered twin-rotor piston engine(ATPE) utilizing a differential velocity driving mechanism to achieve a high output torque was proposed.The ATPE had eight separated rotary cylinders which can dynamically enlarge the engine displacement as a result of the special driving mechanism,which was named dynamic volume expansion.The mathematical model of ATPE comprising a dynamic model and a thermodynamic model was established under the assumption of no mechanical friction.The model was numerically simulated in Matlab.The results show that shortage of low output torque confusing traditional air-powered engines can be overcome.The average output torque sharply increases to 100 N·m,which is about three times that of traditional air-powered engines with equal cylinder displacement under the pressure of 0.6 MPa at 480 r/min.ATPE can be used to drive vehicles directly without transmission box,therefore the energy transfer efficiency of ATPE can be increased.Furthermore,benefitting from the novel gas distribution system,the engine shows an ability in self-adjusting under different loads.The arrangements of air ports automatically adjust the open interval of air ports according to the load,which may simplify the speed control system.
文摘The aspiration of all wind turbine designers is to attain Betz’s upper limit, which represents the highest efficiency in wind energy extraction. Majority of working turbines operate slightly below this limit with an exception of a few operating in wind tunnels. This study proposes for a comprehensive reevaluation of Betz’s derivation, aiming to establish the gap between a theoretical power limit and a practical limit for realization. There are two common expressions for power coefficient giving the same optimal value of 59%, but they generate different power-coefficient curves when plotted against velocity ratios. This paper presents a new method being referred as “Direct Multiplication Fractional Change” (DMFC) for deriving power-coefficient curves in wind energy, and compares its generated curve with established models. Discrepancies in power-coefficient expressions are identified and harmonized. Three approaches, namely EVAM, LVM, and DMFCM, were used for the numerical derivation of cp in the study, with their evaluation summarized in a table. The study collaborates its findings with a formulated velocity-distance curve, commonly presented as a hypothetical velocity profile in some publications. The results from DMFCM indicate two distinct maxima for the power coefficient. On the front side of the disc, a maximum of 0.5 is achievable in practice, although it is not the highest theoretically. On the rear side, a theoretical maximum of 0.59 is observed, but this value is not attainable in practice. These maxima are separated by their positions along the line of flow relative to the disc. However, this approximation is limited to a streamlined flow model of the rotor disc.
文摘Small-scale vertical axis wind turbine (VAWT) rotor is developed for use in areas lacking adequate energy infrastructure. The materials and methods of construction are selected to minimize cost as much as possible. The paper describes the design of different kinds of vertical axis wind turbine rotors having different number of blades and twist angle. The aim of the work is to study the influence of the different designs on rotational speed and power of rotor in different wind speed.
文摘This study presents a comprehensive impact analysis of the rotor angle stability of a proposed international connection between the Philippines and Sabah,Malaysia,as part of the Association of Southeast Asian Nations(ASEAN)Power Grid.This study focuses on modeling and evaluating the dynamic performance of the interconnected system,considering the high penetration of renewable sources.Power flow,small signal stability,and transient stability analyses were conducted to assess the ability of the proposed linked power system models to withstand small and large disturbances,utilizing the Power Systems Analysis Toolbox(PSAT)software in MATLAB.All components used in the model are documented in the PSAT library.Currently,there is a lack of publicly available studies regarding the implementation of this specific system.Additionally,the study investigates the behavior of a system with a high penetration of renewable energy sources.Based on the findings,this study concludes that a system is generally stable when interconnection is realized,given its appropriate location and dynamic component parameters.Furthermore,the critical eigenvalues of the system also exhibited improvement as the renewable energy sources were augmented.
文摘This paper presents a PFCVF (Power Factor Correction) rectifier that uses a variable frequency source for alternators for electric and hybrid vehicles application. In such application, the frequency of the signal in the alternator changes according to the vehicle speed, more over the loading effect on the alternator introduces harmonic currents and increases the alternator apparent power requirements. To overcome these problems and aiming more stability and better design of the alternator, a new third harmonic injection technique is proposed. This technique allows to preserve a good THD (Total Harmonic Distortion) of the input source at any frequency and to decrease losses in semiconductors switches, thereby allowing more stability and reducing the apparent power requirements. A comparative study between the standard and the new technique is made and highlights the effectiveness of the new design. A detailed analysis of the proposed topology is presented and simulations as well as experimental results are shown.