期刊文献+
共找到1,921篇文章
< 1 2 97 >
每页显示 20 50 100
Coordinated Rotor-Side Control Strategy for Doubly-FedWind Turbine under Symmetrical and Asymmetrical Grid Faults
1
作者 Quanchun Yan Chao Yuan +2 位作者 WenGu Yanan Liu Yiming Tang 《Energy Engineering》 EI 2023年第1期49-68,共20页
In order to solve the problems of rotor overvoltage,overcurrent and DC side voltage rise caused by grid voltage drops,a coordinated control strategy based on symmetrical and asymmetrical low voltage ride through of ro... In order to solve the problems of rotor overvoltage,overcurrent and DC side voltage rise caused by grid voltage drops,a coordinated control strategy based on symmetrical and asymmetrical low voltage ride through of rotor side converter of the doubly-fed generator is proposed.When the power grid voltage drops symmetrically,the generator approximate equation under steady-state conditions is no longer applicable.Considering the dynamic process of stator current excitation,according to the change of stator flux and the depth of voltage drop,the system can dynamically provide reactive power support for parallel nodes and suppress the rise of DC side voltage and rotor over-current.When the grid voltage drops asymmetrically,the positive and negative sequence components are separated in the rotating coordinate system.The doubly fed generator model is established to suppress the rotor positive sequence current and negative sequence current respectively.At the same time,the output voltage limit of the converter is discussed,and the reference value is adjusted within the allowable output voltage range.In order to adapt to the occurrence of different types of power grid faults and complex operating conditions,a fast switching module of fault type detection and rotor control mode is designed to detect the type of power grid faults and voltage drop depth in real time and switch the rotor side control mode dynamically.Finally,the simulation model of the doubly fed wind turbine is constructed in Matlab/Simulink.The simulation results verify that the proposed control strategy can improve the low-voltage ride through performance of the system when dealing with the symmetrical and asymmetric voltage drop of the power grid and identify the power grid fault type and provide the correct control strategy. 展开更多
关键词 Doubly-fed wind turbines symmetrical faults asymmetrical faults low voltage ride through rotor side control fault type detection
下载PDF
Effects of Rotor Solidity on the Performance of Impulse Turbine for OWC Wave Energy Converter 被引量:4
2
作者 刘臻 赵环宇 崔莹 《China Ocean Engineering》 SCIE EI CSCD 2015年第5期663-672,共10页
Impulse turbine, working as a typical self-rectifying turbine, is recently utilized for the oscillating water column(OWC) wave energy converters, which can rotate in the same direction under the bi-directional air f... Impulse turbine, working as a typical self-rectifying turbine, is recently utilized for the oscillating water column(OWC) wave energy converters, which can rotate in the same direction under the bi-directional air flows. A numerical model established in Fluent is validated by the corresponding experimental results. The flow fields, pressure distribution and dimensionless evaluating coefficients can be calculated and analyzed. Effects of the rotor solidity varying with the change of blade number are investigated and the suitable solidity value is recommended for different flow coefficients. 展开更多
关键词 wave energy oscillating water column impulse turbine rotor solidity operating performance numerical simulation
下载PDF
Process parameter optimization for local post-weld heat treatment.of turbine rotor based on uniform design 被引量:1
3
作者 王开云 陆皓 +2 位作者 余春 曹志明 顾福明 《China Welding》 EI CAS 2012年第3期44-49,共6页
During the process of local post-weld heat treatment ( PWHT) , the temperature difference inside the weld overlay is a very influential factor on relieving residual stress. In this paper, a commercial program (ABA... During the process of local post-weld heat treatment ( PWHT) , the temperature difference inside the weld overlay is a very influential factor on relieving residual stress. In this paper, a commercial program (ABAQUS) was used to simulate the temperature field in turbine rotor, and the influence of heat treatment parameters on temperature was investigated by finite element method. Weight analysis shows that the holding temperature and heating rate are the main factors affecting on temperature, especially the holding temperature. Besides, two regression equations that reflect the relationship between temperature and heat treatment parameters were fitted with uniform design method. Both the correlation coefficients of the regression equations are up to O. 999 2, and the maximum residual error is only O. 7. The agreement between simulation results and regression results is shown to be excellent. At the end, local heat treatment parameters were optimized using the simplex method. 展开更多
关键词 turbine rotor parameter optimization uniform design
下载PDF
Validation of the Actuator Line Model for Simulating Flows past Yawed Wind Turbine Rotors 被引量:1
4
作者 Wen Zhong Shen Wei Jun Zhu Hua Yang 《Journal of Power and Energy Engineering》 2015年第7期7-13,共7页
The Actuator Line/Navier-Stokes model is validated against wind tunnel measurements for flows past the yawed MEXICO rotor and past the yawed NREL Phase VI rotor. The MEXICO rotor is operated at a rotational speed of 4... The Actuator Line/Navier-Stokes model is validated against wind tunnel measurements for flows past the yawed MEXICO rotor and past the yawed NREL Phase VI rotor. The MEXICO rotor is operated at a rotational speed of 424 rpm, a pitch angle of ?2.3。, wind speeds of 10, 15, 24 m/s and yaw angles of 15。, 30。 and 45。. The computed loads as well as the velocity field behind the yawed MEXICO rotor are compared to the detailed pressure and PIV measurements which were carried out in the EU funded MEXICO project. For the NREL Phase VI rotor, computations were carried out at a rotational speed of 90.2 rpm, a pitch angle of 3。, a wind speed of 5 m/s and yaw angles of 10。and 30。. The computed loads are compared to the loads measured from pressure measurement. 展开更多
关键词 Actuator LINE MODEL MEXICO rotor NREL Phase VI rotor Yawed Wind turbine rotor
下载PDF
Design and Analysis of a Dual Rotor Turbine with a Shroud Using Flow Simulations
5
作者 Peter E. Jenkins Abdalfadel Younis Yuxuan Chen 《Journal of Power and Energy Engineering》 2017年第4期25-40,共16页
This paper describes the flow simulation of a dual rotor, three-bladed wind turbine module with a shroud to determine its performance. The parameters that were evaluated are the effects of adding a second rotor, wind ... This paper describes the flow simulation of a dual rotor, three-bladed wind turbine module with a shroud to determine its performance. The parameters that were evaluated are the effects of adding a second rotor, wind speed, distance between the two rotors, the size of the front rotor and the shroud. The results were obtained by using the Solid Works 2015 flow simulation program. Also, the benefits and cost issues for wind generating systems are illustrated. 展开更多
关键词 Design and Analysis of a DUAL rotor turbine with a SHROUD USING Flow Simulations
下载PDF
Design and Analysis of Different Types of Rotors for Pico-Turbine
6
作者 Samia Tabassum Mashudur Rahaman +7 位作者 Muhammad Shahriar Bashar Saidul Islam Afrina Sharmin Abdullah Yousuf Imam Azizul Hoque Nahid Mahbub Sayeda Khatun Mahfuza Khanam 《Smart Grid and Renewable Energy》 2015年第6期141-147,共7页
Small-scale vertical axis wind turbine (VAWT) rotor is developed for use in areas lacking adequate energy infrastructure. The materials and methods of construction are selected to minimize cost as much as possible. Th... Small-scale vertical axis wind turbine (VAWT) rotor is developed for use in areas lacking adequate energy infrastructure. The materials and methods of construction are selected to minimize cost as much as possible. The paper describes the design of different kinds of vertical axis wind turbine rotors having different number of blades and twist angle. The aim of the work is to study the influence of the different designs on rotational speed and power of rotor in different wind speed. 展开更多
关键词 Vertical AXIS WIND turbine SAVONIUS rotor WIND Energy Power Co-Efficient
下载PDF
Steam turbine rotor crack detection using sifting process of EMD and B-spline wavelet on the interval element model
7
作者 Chen Xuefeng Yang Zhibo +2 位作者 Li Bing Zi Yanyang He Zhengjia 《Engineering Sciences》 EI 2013年第1期10-14,22,共6页
A high-precision identification method for steam turbine rotor crack is presented. By providing me nrst three measured natural frequencies, contours for the specified natural frequency are plotted in the same coordi- ... A high-precision identification method for steam turbine rotor crack is presented. By providing me nrst three measured natural frequencies, contours for the specified natural frequency are plotted in the same coordi- nate, and the intersection of the three curves predicts the crack location and size. The cracked rotor system is mod- eled using B-spline wavelet on the interval (BSWI) finite element method, and a method based on empirical mode decomposition (EMD) and Laplace wavelet is implemented to improve the identification precision of the first three measured natural frequencies. Compared with the classical nondestructive testing, the presented method shows its effectiveness and reliability. It is feasible to apply this method to the online health monitoring for rotor structure. 展开更多
关键词 steam turbine rotor crack detection EMD wavelet finite element method
下载PDF
Computational Fluid Dynamics Analysis of Multi-Bladed Horizontal Axis Wind Turbine Rotor
8
作者 Nasim A. Mamaghani Peter E. Jenkins 《World Journal of Mechanics》 2020年第9期121-138,共18页
The principal objective of this work was to investigate the 3D flow field around a multi-bladed horizontal axis wind turbine (HAWT) rotor and to investigate its performance characteristics. The aerodynamic performance... The principal objective of this work was to investigate the 3D flow field around a multi-bladed horizontal axis wind turbine (HAWT) rotor and to investigate its performance characteristics. The aerodynamic performance of this novel rotor design was evaluated by means of a Computational Fluid Dynamics commercial package. The Reynolds Averaged Navier-Stokes (RANS) equations were selected to model the physics of the incompressible Newtonian fluid around the blades. The Shear Stress Transport (SST) <em>k</em>-<em>ω</em> turbulence model was chosen for the assessment of the 3D flow behavior as it had widely used in other HAWT studies. The pressure-based simulation was done on a model representing one-ninth of the rotor using a 40-degree periodicity in a single moving reference frame system. Analyzing the wake flow behavior over a wide range of wind speeds provided a clear vision of this novel rotor configuration. From the analysis, it was determined that the flow becomes accelerated in outer wake region downstream of the rotor and by placing a multi-bladed rotor with a larger diameter behind the forward rotor resulted in an acceleration of this wake flow which resulted in an increase the overall power output of the wind machine. 展开更多
关键词 Computational Fluid Dynamics Horizontal Axis Wind turbine Multi-Bladed rotor Aerodynamic Torque
下载PDF
Detection of Blade Mistuning in a Low Pressure Turbine Rotor Resulting from Manufacturing Tolerances and Differences in Blade Mounting
9
作者 Florian Schonleitner Lukas Traussnig Andreas Marn Franz Heitmeir 《Journal of Mechanics Engineering and Automation》 2015年第5期297-308,共12页
For a serious prediction of vibration characteristics of any structure, a detailed knowledge of the modal characteristic is essential. This is especially important for bladed turbine rotors. Mistuning of the blading o... For a serious prediction of vibration characteristics of any structure, a detailed knowledge of the modal characteristic is essential. This is especially important for bladed turbine rotors. Mistuning of the blading of a turbine rotor can appear due to manufacturing tolerances or because of the blading process itself due to unequal mounting of the blades into the disk. This paper investigates the mistuning of the individual blades of a low pressure turbine with respect to the effects mentioned above. Two different rotors with different aerodynamic design of the blades were investigated. The blades were mounted to the disk with a so-called hammer head root which is especially prone to mounting irregularities. For detailed investigations, the rotor was excited with a shaker system to detect the forced response behavior of the individual blades. The measurements were done with a laser vibrometer system. As the excitation of rotor structure was held constant during measurement, it was possible to detect the line of nodes and mode shapes as well. It could be shown that the assembly process has an influence on the mistuning. The data were analyzed and compared with numerical results. For this, different contact models and boundary conditions were used. The above described characterization of modal behavior of the rotor is the basis for the upcoming aeroelastic investigations and especially for the blade vibration measurements of the rotor, turning with design and off-design speeds. 展开更多
关键词 Mistuning modal characteristics low pressure turbine rotor blading numerical and experimental modal analysis.
下载PDF
Criterion of aerodynamic performance of large-scale offshore horizontal axis wind turbines
10
作者 程兆雪 李仁年 +1 位作者 杨从新 胡文瑞 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2010年第1期13-20,共8页
With the background of offshore wind energy projects, this paper studies aerodynamic performance and geometric characteristics of large capacity wind turbine rotors (1 to 10 MW), and the main characteristic paramete... With the background of offshore wind energy projects, this paper studies aerodynamic performance and geometric characteristics of large capacity wind turbine rotors (1 to 10 MW), and the main characteristic parameters such as the rated wind speed, blade tip speed, and rotor solidity. We show that the essential criterion of a high- performance wind turbine is a highest possible annual usable energy pattern factor and a smallest possible dimension, capturing the maximum wind energy and producing the maximum annual power. The influence of the above-mentioned three parameters on the pattern factor and rotor geometry of wind turbine operated in China's offshore meteoro- logical environment is investigated. The variation patterns of aerodynamic and geometric parameters are obtained, analyzed, and compared with each other. The present method for aerodynamic analysis and its results can form a basis for evaluating aerodynamic performance of large-scale offshore wind turbine rotors. 展开更多
关键词 offshore wind energy project horizontal axis wind turbine rotor aerody-namic design annual usable energy pattern factor power coefficient wind turbine rotor wind turbine blade
下载PDF
Study on leakage flow characteristics of radial inflow turbines at rotor tip clearance 被引量:6
11
作者 DENG QingHua NIU JiuFang FENG ZhenPing 《Science China(Technological Sciences)》 SCIE EI CAS 2008年第8期1125-1136,共12页
Tip clearance leakage flow in a radial inflow turbine rotor for microturbines under the stage environment is investigated using a three-dimensional viscous flow simulation. The results indicate that the scraping flow ... Tip clearance leakage flow in a radial inflow turbine rotor for microturbines under the stage environment is investigated using a three-dimensional viscous flow simulation. The results indicate that the scraping flow caused by relative motion between casing and rotor tip, and the pressure difference between pressure side and suction side at rotor tip, play important roles in tip clearance leakage flow. The more the rotor tip speed increases and tip clearance height decreases, the more the scraping effect acts. Though the leakage velocity of tip clearance at midsection and exducer regions changes less when the rotor rotational speed is changing, the distance between passage vortex and rotor suction side varies in evidence. Main leakage flow rate of tip clearance takes place at region of exducer tip and some seal configurations will be quite effective for cutting leakage flow if these configurations are arranged over midsection and exducer of the radial inflow rotor. 展开更多
关键词 MICROturbine RADIAL INFLOW turbine rotor TIP CLEARANCE
原文传递
Influence of exit-to-throat width ratio on performance of high pressure convergent-divergent rotor in a vaneless counter-rotating turbine 被引量:3
12
作者 ZHANG Lei WANG HuiShe +1 位作者 LUO WeiWei XU JianZhong 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第3期723-732,共10页
This paper describes the redesign of a high pressure rotor (with exit Mach number around 1.5) for the vaneless counter-rotating turbine by choosing adequate exit-to-throat width ratio. Based on the previous design ana... This paper describes the redesign of a high pressure rotor (with exit Mach number around 1.5) for the vaneless counter-rotating turbine by choosing adequate exit-to-throat width ratio. Based on the previous design analysis and test results, effects of the exit-to-throat width ratio on the performance of the transonic turbine cascade were proposed. In order to investigate the influence of the exit-to-throat width ratio on the performance of the turbine cascade, a flow model of the convergent-divergent turbine cascade was constructed by using the theory of Laval nozzle. Then a method on how to choose the adequate exit-to-throat width ratio for the turbine cascade was proposed. To validate the method, it was used to calculate the adequate exit-to-throat width ratio for the high pressure rotor of the vaneless counter-rotating turbine. The high pressure turbine rotor was redesigned with the new exit-to-throat width ratio. Numerical simulation results show that the isentropic efficiency of the redesigned vaneless counter-rotating turbine under the design condition has increased by 0.9% and the efficiencies under the off-design conditions are also improved significantly. On the original design, a group of compressional waves are created from the suction surface after about 60% axial chord in the high pressure turbine rotor. While on the new design the compressional waves are eliminated. Furthermore, on the original design, the inner-extending waves first impinge on the next high pressure turbine rotor suction surface. Its reflection is strong enough and cannot be neglected. However on the new design the inner-extending waves are weakened or even eliminated. Another main progress is that the redesigned high pressure turbine rotor is of practical significance. In the original rotor, a part of the blade (from 60% axial chord to the trailing edge) is thin leading to the intensity problem and difficult arrangement of the cooling system. In the new design, however, the thickness distribution of the rotor airfoil along the chord is relatively reasonable. The intensity of the rotor is enhanced. It is possible to arrange the cooling system reasonably. 展开更多
关键词 exit-to-throat width ratio counter-rotating turbine transonic turbine high pressure rotor
原文传递
Experimental Analysis of the Aerodynamic Performance of an Innovative Low Pressure Turbine Rotor
13
作者 Infantino Daniele Satta Francesca +3 位作者 Simoni Daniele Ubaldi Marina Zunino Pietro Bertini Francesco 《Journal of Thermal Science》 SCIE EI CAS CSCD 2016年第1期22-31,共10页
In the present work the aerodynamic performances of an innovative rotor blade row have been experimentally investigated. Measurements have been carried out in a large scale low speed single stage cold flow facility at... In the present work the aerodynamic performances of an innovative rotor blade row have been experimentally investigated. Measurements have been carried out in a large scale low speed single stage cold flow facility at a Reynolds number typical of aeroengine cruise, under nominal and off-design conditions. The time-mean blade aerodynamic loadings have been measured at three radial positions along the blade height through a pressure transducer installed inside the hollow shaft, by delivering the signal to the stationary frame with a slip ring. The time mean aerodynamic flow fields upstream and downstream of the rotor have been measured by means of a five-hole probe to investigate the losses associated with the rotor. The investigations in the single stage research turbine allow the reproduction of both wake-boundary layer interaction as well as vortex-vortex interaction. The detail of the present results clearly highlights the strong dissipative effects induced by the blade tip vortex and by the momentum defect as well as the turbulence production, which is generated during the migration of the stator wake in the rotor passage. Phase-locked hot-wire investigations have been also performed to analyze the time-varying flow during the wake passing period. In particular the interaction between stator and rotor structures has been investigated also under off-design conditions to further explain the mechanisms contributing to the loss generation for the different conditions. 展开更多
关键词 Low Pressure turbine Single Stage Research turbine rotor Aerodynamic Loading Hot-wire Anemometry
原文传递
Investigation of Load Prediction on the Mexico Rotor Using the Technique of Determination of the Angle of Attack 被引量:5
14
作者 YANG Hua SHEN Wenzhong +1 位作者 SORENSEN Jens Nork er ZHU Weijun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第3期506-514,共9页
Blade element moment(BEM) is a widely used technique for prediction of wind turbine aerodynamics performance,the reliability of airfoil data is an important factor to improve the prediction accuracy of aerodynamic l... Blade element moment(BEM) is a widely used technique for prediction of wind turbine aerodynamics performance,the reliability of airfoil data is an important factor to improve the prediction accuracy of aerodynamic loads and power using a BEM code.The method of determination of angle of attack on rotor blades developed by SHEN,et al is successfully used to extract airfoil data from experimental characteristics on the MEXICO(Model experiments in controlled conditions) rotor.Detailed surface pressure and particle image velocimetry(PIV) flow fields at different rotor azimuth positions are examined to determine the sectional airfoil data.The present technique uses simultaneously both PIV data and blade pressure data that include the actual flow conditions(for example,tunnel effects),therefore it is more advantageous than other techniques which only use the blade loading(pressure data).The extracted airfoil data are put into a BEM code,and the calculated axial and tangential forces are compared to both computations using BEM with Glauert's and SHEN's tip loss correction models and experimental data.The comparisons show that the present method of determination of angle of attack is correct,and the re-calculated forces have good agreements with the experiment. 展开更多
关键词 wind turbine rotor aerodynamics airfoil data
下载PDF
The applicability of vortex identification methods for complex vortex structures in axial turbine rotor passages 被引量:10
15
作者 Yu-fan Wang Wei-hao Zhang +1 位作者 Xia Cao Hong-kai Yang 《Journal of Hydrodynamics》 SCIE EI CSCD 2019年第4期700-707,共8页
The complex vortex structures in the flow around turbine rotor passages, with weak or strong, large or small vortices, interacting with each other, often generate most of aerodynamic loss in turbomachines. Therefore, ... The complex vortex structures in the flow around turbine rotor passages, with weak or strong, large or small vortices, interacting with each other, often generate most of aerodynamic loss in turbomachines. Therefore, it is important to identify the vortex structures accurately for the flow field analysis and the aerodynamic performance optimization for turbomachines. In this paper, by using 4 vortex identification methods (the Q criterion, the Q method, the Liutex method and the Q -Liutex method), the vortices are identified in turbine rotor passages. In terms of the threshold selection, the results show that the D method and the Q -Liutex method are more robust, by which strong and weak vortices can be visualized simultaneously over a wide range of thresholds. As for the display consistency of the vortex identification methods and the streamlines, it is shown that the Liutex method gives results coinciding best with the streamlines in identifying strong vortices, while the Q -Liutex method gives results the most consistent with the streamlines in identifying weak vortices. As to the relationship among the loss, the vortices and the shear, except for the Q criterion, the other three methods can distinguish the vortical regions from the high shear regions. And the flow losses in turbine rotor passages are often related to high shear zones, while there is a small loss within the core of the vortex. In order to obtain the variation of vortices in the turbine rotor passages at different working points, the Liutex method is applied in 2 cases of a turbine with different angles of attack. The identification results show that the strengths of the tip leakage vortex and the upper passage vortex are weaker and the distance between them is closer at a negative angle of attack. This indicates that the Liutex method is an effective method, and can be used to analyze the vortex structures and their evolution in turbine rotor passages. 展开更多
关键词 VORTEX identification TIP LEAKAGE VORTEX turbine rotor PASSAGE Liutex METHOD Q -Liutex METHOD
原文传递
The assessment of extactable tidal energy and the effect of tidal energy turbine deployment on the hydrodynamics in Zhoushan 被引量:5
16
作者 HOU Fang BAO Xianwen +1 位作者 LI Benxia LIU Qianqian 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2015年第5期86-91,共6页
In this study, we construct one 2-dimensional tidal simulation, using an unstructured Finite Volume Coastal Ocean Model (FVCOM). In the 2-D model, we simulated the tidal turbines through adding additional bottom dra... In this study, we construct one 2-dimensional tidal simulation, using an unstructured Finite Volume Coastal Ocean Model (FVCOM). In the 2-D model, we simulated the tidal turbines through adding additional bottom drag in the element where the tidal turbines reside. The additional bottom drag was calculated from the relationship of the bottom friction dissipation and the rated rotor efficiency of the tidal energy turbine. This study analyzed the effect of the tidal energy turbine to the hydrodynamic environment, and calculated the amount of the extractable tidal energy resource at the Guishan Hangmen Channel, considering the rotor wake effect. 展开更多
关键词 extractable tidal energy resource rotor wake effect tidal energy turbine
下载PDF
ZERO MODE NATURAL FREQUENCY AND NONLINEAR VIBRATION OF COUPLED LATERAL AND TORSION OF A LARGE TURBINE GENERATOR 被引量:2
17
作者 TaNa QiuJiajun CaiGanhua 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2005年第2期302-306,共5页
Zero mode natural frequency (ZMNF) is found during experiments. The ZMNF andvibrations resulted by it are studied. First, calculating method of the ZMNF excited byelectromagnetic in vibrational system of coupled mecha... Zero mode natural frequency (ZMNF) is found during experiments. The ZMNF andvibrations resulted by it are studied. First, calculating method of the ZMNF excited byelectromagnetic in vibrational system of coupled mechanics and electrics are given from the view ofmagnetic energy. Laws that the ZMNF varies with active power and exciting current are obtained andare verified by experiments. Then, coupled lateral and torsional vibration of rotor shaft system isstudied by considering rest eccentricity, rotating eccentricity and swing eccentricity. UsingLargrange-Maxwell equation when three phases are asymmetric derives differential equation of thecoupled vibration. With energy method of nonlinear vibration, amplitude-frequency characteristics ofresonance are studied when rotating speed of rotor equals to ZMNF. The results show that ZMNF willoccur in turbine generators by the action of electromagnetic. Because ZMNF varies withelectromagnetic parameters, resonance can occur when exciting frequency of the rotor speed is fixedwhereas exciting current change. And also find that a generator is in the state of large amplitudein rated exciting current. 展开更多
关键词 Zero mode natural frequency Coupled vibration of lateral and torsionEccentricity rotor shaft Hydro turbine generator
下载PDF
Study on Contra-Rotating Small-Sized Axial Flow Hydro Turbine 被引量:2
18
作者 Ryosuke Sonohata Junichiro Fukutomi Toru Toru Shigemitsu 《Open Journal of Fluid Dynamics》 2012年第4期318-323,共6页
It is thought that small hydropower generation is alternative energy, and the energy potential of small hydropower is large. The efficiency of small hydro turbines is lower than that of large one, and these small hydr... It is thought that small hydropower generation is alternative energy, and the energy potential of small hydropower is large. The efficiency of small hydro turbines is lower than that of large one, and these small hydro turbine’s common problems are out of operation by foreign materials. Then, there are demands for small hydro turbines to keep high per- formance and wide flow passage. Therefore, we adopted contra-rotating rotors which can be expected to achieve high performance and low-solidity rotors with wide flow passage in order to accomplish high performance and stable opera- tion. Final goal on this study is development of an electric appliance type small hydro turbine which has high portability and makes an effective use of the unused small hydro power energy source. In the present paper, the performance and the internal flow conditions in detail of contra-rotating small-sized axial flow hydro turbine are shown as a first step of the research with the numerical flow analysis. Then, a capability adopting contra-rotating rotors to an electric appliance type small hydro turbine was discussed. Furthermore, the high performance design for it was considered by the numeri- cal analysis results. 展开更多
关键词 Small-Sized AXIAL turbine Contra-Rotating rotor Electric APPLIANCE RENEWABLE Energy Internal Flow
下载PDF
EXPERIMENTAL INVESTIGATION FOR THE EFFECT OF ROTATION ON THREE-DIMENSIONAL FLOW FIELD IN FILM-COOLED TURBINE 被引量:2
19
作者 YUAN Feng ZHU Xiaocheng DU Zhaohui 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第1期10-15,共6页
An experimental investigation of three-dimensional flow field in a film-cooled turbine model is carried out by using particle image velocimeter (PIV) in a low-speed wind tunnel. The effects of different blowing rati... An experimental investigation of three-dimensional flow field in a film-cooled turbine model is carried out by using particle image velocimeter (PIV) in a low-speed wind tunnel. The effects of different blowing ratios (M=1.5, 2) on the flow field are studied. The experimental results reveal the classical phenomena of the formation of kidney vortex pair and secondary flow in wake region behind the jet hole. And the changes of the kidney vortex pair and the wake at different locations away from the hole on the suction and pressure sides are also studied. Compared with the flow field in stationary cascade, there are centrifugal force and Coriolis force existing in the flow field of rotating turbine, and these forces bring the radial velocity in the jet flow. The effect of rotatien on the flow field of the pressure side is more distinct than that on the suction side from the measured flow fields in Y-Z plane and radial velocity contours. The increase of blowing ratio makes the kidney vortex pair and the secondary flow in the wake region stronger and makes the range of the wake region enlarged. 展开更多
关键词 Film-cooled turbine rotor PIV measurement Blowing ratio Three-dimensional flow field
下载PDF
Numerical Analysis of Horizontal-Axis Wind Turbine Characteristics in Yawed Conditions 被引量:1
20
作者 Masami Suzuki 《Open Journal of Fluid Dynamics》 2012年第4期331-336,共6页
Computational fluid dynamics (CFD) modeling and experiments have both advantages and disadvantages. Doing both can be complementary, and we can expect more effective understanding of the phenomenon. It is useful to ut... Computational fluid dynamics (CFD) modeling and experiments have both advantages and disadvantages. Doing both can be complementary, and we can expect more effective understanding of the phenomenon. It is useful to utilize CFD as an efficient tool for the turbomachinery and can complement uncertain experimental results. However the CFD simulation takes a long time for a design in generally. It is need to reduce the calculation time for many design condi- tions. In this paper, it is attempted to obtain the more accurate characteristics of a wind turbine in yawed flow condi- tions for a short time, using a few grid points. It is discussed for the reliability of the experimental results and the CFD results. 展开更多
关键词 WIND turbine Yawed Flow CFD UNSTEADY rotor AERODYNAMICS Performance
下载PDF
上一页 1 2 97 下一页 到第
使用帮助 返回顶部