We review and compare two definitions of rough set approximations.One is defined by a pair of sets in the universe and the other by a pair of sets in the quotient universe.The latter definition,although less studied,i...We review and compare two definitions of rough set approximations.One is defined by a pair of sets in the universe and the other by a pair of sets in the quotient universe.The latter definition,although less studied,is semantically superior for interpreting rule induction and is closely related to granularity switching in granular computing.Numerical measures about the accuracy and quality of approximations are examined.Several semantics difficulties are commented.展开更多
This paper combines interval-valued intuitionistic fuzzy sets and rough sets.It studies rougheness in interval-valued intuitionistic fuzzy sets and proposes one kind of interval-valued intuitionistic fuzzy-rough sets ...This paper combines interval-valued intuitionistic fuzzy sets and rough sets.It studies rougheness in interval-valued intuitionistic fuzzy sets and proposes one kind of interval-valued intuitionistic fuzzy-rough sets models under the equivalence relation in crisp sets.That extends the classical rough set defined by Pawlak.展开更多
Rough set theory and vague set theory are powerful tools for managing uncertain, incomplete and imprecise information. This paper extends the rough vague set model based on equivalence relations and the rough fuzzy se...Rough set theory and vague set theory are powerful tools for managing uncertain, incomplete and imprecise information. This paper extends the rough vague set model based on equivalence relations and the rough fuzzy set model based on fuzzy relations to vague sets. We mainly focus on the lower and upper approxima- tion operators of vague sets based on vague relations, and investigate the basic properties of approximation opera- tors on vague sets. Specially, we give some essential characterizations of the lower and upper approximation operators generated by reflexive, symmetric, and transi- tive vague relations. Finally, we structure a parameterized roughness measure of vague sets and similarity measure methods between two rough vague sets, and obtain some properties of the roughness measure and similarity measures. We also give some valuable counterexamples and point out some false properties of the roughness measure in the paper of Wang et al.展开更多
In this paper, we consider the relations among L-fuzzy sets, rough sets and n-ary polygroup theory. Some properties of (normal) TL-fuzzy n-ary subpolygroups of an n-ary polygroup are first obtained. Using the concep...In this paper, we consider the relations among L-fuzzy sets, rough sets and n-ary polygroup theory. Some properties of (normal) TL-fuzzy n-ary subpolygroups of an n-ary polygroup are first obtained. Using the concept of L-fuzzy sets, the notion of ~)-lower and T-upper L-fuzzy rough approximation operators with respect to an L-fuzzy set is introduced and some related properties are presented. Then a new algebraic structure called (normal) TL-fuzzy rough n-ary polygroup is defined and investigated. Also, the (strong) homomorphism of θ-lower and T-upper L-fuzzy rough approximation operators is studied.展开更多
Though the dominance-based rough set approach has been applied to interval-valued information systems for knowledge discovery, the traditional dominance relation cannot be used to describe the degree of dominance prin...Though the dominance-based rough set approach has been applied to interval-valued information systems for knowledge discovery, the traditional dominance relation cannot be used to describe the degree of dominance principle in terms of pairs of objects. In this paper, a ranking method of interval-valued data is used to describe the degree of dominance in the interval-valued information system. Therefore, the fuzzy rough technique is employed to construct the rough approximations of upward and downward unions of decision classes, from which one can induce at least and at most decision rules with certainty factors from the interval-valued decision system. Some numerical examples are employed to substantiate the conceptual arguments.展开更多
Rough set theory is an important tool to solve uncertain problems. Attribute reduction, as one of the core issues of rough set theory, has been proven to be an effective method for knowledge acquisition. Most of heuri...Rough set theory is an important tool to solve uncertain problems. Attribute reduction, as one of the core issues of rough set theory, has been proven to be an effective method for knowledge acquisition. Most of heuristic attribute reduction algorithms usually keep the positive region of a target set unchanged and ignore boundary region information. So, how to acquire knowledge from the boundary region of a target set in a multi-granulation space is an interesting issue. In this paper, a new concept, fuzziness of an approximation set of rough set is put forward firstly. Then the change rules of fuzziness in changing granularity spaces are analyzed. Finally, a new algorithm for attribute reduction based on the fuzziness of 0.5-approximation set is presented. Several experimental results show that the attribute reduction by the proposed method has relative better classification characteristics compared with various classification algorithms.展开更多
文摘We review and compare two definitions of rough set approximations.One is defined by a pair of sets in the universe and the other by a pair of sets in the quotient universe.The latter definition,although less studied,is semantically superior for interpreting rule induction and is closely related to granularity switching in granular computing.Numerical measures about the accuracy and quality of approximations are examined.Several semantics difficulties are commented.
基金supported by grants from the National Natural Science Foundation of China(Nos.10971185 and 10971186)the Natural Science Foundation of Fujiang Province in China(No.2008F5066).
文摘This paper combines interval-valued intuitionistic fuzzy sets and rough sets.It studies rougheness in interval-valued intuitionistic fuzzy sets and proposes one kind of interval-valued intuitionistic fuzzy-rough sets models under the equivalence relation in crisp sets.That extends the classical rough set defined by Pawlak.
文摘Rough set theory and vague set theory are powerful tools for managing uncertain, incomplete and imprecise information. This paper extends the rough vague set model based on equivalence relations and the rough fuzzy set model based on fuzzy relations to vague sets. We mainly focus on the lower and upper approxima- tion operators of vague sets based on vague relations, and investigate the basic properties of approximation opera- tors on vague sets. Specially, we give some essential characterizations of the lower and upper approximation operators generated by reflexive, symmetric, and transi- tive vague relations. Finally, we structure a parameterized roughness measure of vague sets and similarity measure methods between two rough vague sets, and obtain some properties of the roughness measure and similarity measures. We also give some valuable counterexamples and point out some false properties of the roughness measure in the paper of Wang et al.
基金The second author is supported by National Natural Science Foundation of China (Grant Nos. 60774049, 60875034), Natural Science Foundation of Education Committee of Hubei Province, China (Grant Nos. D20092901, Q20092907, D20082903, B200529001) and Natural Science Foundation of Hubei Province, China (Grant No. 2008CDB341)
文摘In this paper, we consider the relations among L-fuzzy sets, rough sets and n-ary polygroup theory. Some properties of (normal) TL-fuzzy n-ary subpolygroups of an n-ary polygroup are first obtained. Using the concept of L-fuzzy sets, the notion of ~)-lower and T-upper L-fuzzy rough approximation operators with respect to an L-fuzzy set is introduced and some related properties are presented. Then a new algebraic structure called (normal) TL-fuzzy rough n-ary polygroup is defined and investigated. Also, the (strong) homomorphism of θ-lower and T-upper L-fuzzy rough approximation operators is studied.
基金Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant No. 60632050) and Postdoctoral Science Foundation of China (20100481149).
文摘Though the dominance-based rough set approach has been applied to interval-valued information systems for knowledge discovery, the traditional dominance relation cannot be used to describe the degree of dominance principle in terms of pairs of objects. In this paper, a ranking method of interval-valued data is used to describe the degree of dominance in the interval-valued information system. Therefore, the fuzzy rough technique is employed to construct the rough approximations of upward and downward unions of decision classes, from which one can induce at least and at most decision rules with certainty factors from the interval-valued decision system. Some numerical examples are employed to substantiate the conceptual arguments.
基金supported by the National Natural Science Foundation of China (61472056, 61309014)
文摘Rough set theory is an important tool to solve uncertain problems. Attribute reduction, as one of the core issues of rough set theory, has been proven to be an effective method for knowledge acquisition. Most of heuristic attribute reduction algorithms usually keep the positive region of a target set unchanged and ignore boundary region information. So, how to acquire knowledge from the boundary region of a target set in a multi-granulation space is an interesting issue. In this paper, a new concept, fuzziness of an approximation set of rough set is put forward firstly. Then the change rules of fuzziness in changing granularity spaces are analyzed. Finally, a new algorithm for attribute reduction based on the fuzziness of 0.5-approximation set is presented. Several experimental results show that the attribute reduction by the proposed method has relative better classification characteristics compared with various classification algorithms.