期刊文献+
共找到1,164篇文章
< 1 2 59 >
每页显示 20 50 100
Adaptive Predictive Inverse Control of Offshore Jacket Platform Based on Rough Neural Network 被引量:2
1
作者 崔洪宇 赵德有 周平 《China Ocean Engineering》 SCIE EI 2009年第2期185-198,共14页
The offshore jacket platform is a complex and time-varying nonlinear system, which can be excited of harmful vibration by external loads. It is difficult to obtain an ideal control performance for passive control meth... The offshore jacket platform is a complex and time-varying nonlinear system, which can be excited of harmful vibration by external loads. It is difficult to obtain an ideal control performance for passive control methods or traditional active control methods based on accurate mathematic model. In this paper, an adaptive inverse control method is proposed on the basis of novel rough neural networks (RNN) to control the harmful vibration of the offshore jacket platform, and the offshore jacket platform model is established by dynamic stiffness matrix (DSM) method. Benefited from the nonlinear processing ability of the neural networks and data interpretation ability of the rough set theory, RNN is utilized to identify the predictive inverse model of the offshore jacket platform system. Then the identified model is used as the adaptive predictive inverse controller to control the harmful vibration caused by wave and wind loads, and to deal with the delay problem caused by signal transmission in the control process. The numerical results show that the constructed novel RNN has advantages such as clear structure, fast training speed and strong error-tolerance ability, and the proposed method based on RNN can effectively control the harmful vibration of the offshore jacket platform. 展开更多
关键词 offshore jacket platform rough set neural network dynamic stiffness matrix adaptive predictive irwerse control wave load wind load
下载PDF
Intelligent Intrusion Detection System Model Using Rough Neural Network 被引量:4
2
作者 Yan, Huai-Zhi Hu, Chang-Zhen Tan, Hui-Min 《Wuhan University Journal of Natural Sciences》 EI CAS 2005年第1期119-122,共4页
A model of intelligent intrusion detection based on rough neural network (RNN), which combines the neural network and rough set, is presented. It works by capturing network packets to identify network intrusions or ma... A model of intelligent intrusion detection based on rough neural network (RNN), which combines the neural network and rough set, is presented. It works by capturing network packets to identify network intrusions or malicious attacks using RNN with sub-nets. The sub-net is constructed by detection-oriented signatures extracted using rough set theory to detect different intrusions. It is proved that RNN detection method has the merits of adaptive, high universality, high convergence speed, easy upgrading and management. 展开更多
关键词 network security neural network intelligent intrusion detection rough set
下载PDF
基于Rough Set和neural network组合数据挖掘
3
作者 王志明 《湖南工业大学学报》 2007年第2期79-83,共5页
提出了一种基于rough set和neural network的数据挖掘新方法。首先利用粗集理论对原始数据进行一致性属性约简,然后使用神经网络对数据进行学习,并同时完成属性的不一致约简,最后再由粗集对神经网络中的知识进行规则抽取。该方法充分融... 提出了一种基于rough set和neural network的数据挖掘新方法。首先利用粗集理论对原始数据进行一致性属性约简,然后使用神经网络对数据进行学习,并同时完成属性的不一致约简,最后再由粗集对神经网络中的知识进行规则抽取。该方法充分融合了粗集理论强大的属性约简、规则生成能力和神经网络优良的分类、容错能力。实验表明,该方法快速有效,生成规则简单准确,具有良好的鲁棒性。 展开更多
关键词 数据挖掘 粗集理论 神经网络 分类
下载PDF
Rough Set Based Fuzzy Neural Network for Pattern Classification 被引量:1
4
作者 李侃 刘玉树 《Journal of Beijing Institute of Technology》 EI CAS 2003年第4期428-431,共4页
A rough set based fuzzy neural network algorithm is proposed to solve the problem of pattern recognition. The least square algorithm (LSA) is used in the learning process of fuzzy neural network to obtain the performa... A rough set based fuzzy neural network algorithm is proposed to solve the problem of pattern recognition. The least square algorithm (LSA) is used in the learning process of fuzzy neural network to obtain the performance of global convergence. In addition, the numbers of rules and the initial weights and structure of fuzzy neural networks are difficult to determine. Here rough sets are introduced to decide the numbers of rules and original weights. Finally, experiment results show the algorithm may get better effect than the BP algorithm. 展开更多
关键词 fuzzy neural network rough sets the least square algorithm back-propagation algorithm
下载PDF
Neural Network Modeling and Prediction of Surface Roughness in Machining Aluminum Alloys 被引量:1
5
作者 N. Fang N. Fang +1 位作者 P. Srinivasa Pai N. Edwards 《Journal of Computer and Communications》 2016年第5期1-9,共9页
Artificial neural network is a powerful technique of computational intelligence and has been applied in a variety of fields such as engineering and computer science. This paper deals with the neural network modeling a... Artificial neural network is a powerful technique of computational intelligence and has been applied in a variety of fields such as engineering and computer science. This paper deals with the neural network modeling and prediction of surface roughness in machining aluminum alloys using data collected from both force and vibration sensors. Two neural network models, including a Multi-Layer Perceptron (MLP) model and a Radial Basis Function (RBF) model, were developed in the present study. Each model includes eight inputs and five outputs. The eight inputs include the cutting speed, the ratio of the feed rate to the tool-edge radius, cutting forces in three directions, and cutting vibrations in three directions. The five outputs are five surface roughness parameters. Described in detail is how training and test data were generated from real-world machining experiments that covered a wide range of cutting conditions. The results show that the MLP model provides significantly higher accuracy of prediction for surface roughness than does the RBF model. 展开更多
关键词 Artificial neural network MODELING PREDICTION Surface roughness MACHINING Aluminum Alloys
下载PDF
Yarn Quality Prediction and Diagnosis Based on Rough Set and Knowledge-Based Artificial Neural Network 被引量:1
6
作者 杨建国 徐兰 +1 位作者 项前 刘彬 《Journal of Donghua University(English Edition)》 EI CAS 2014年第6期817-823,共7页
In the spinning process, some key process parameters( i. e.,raw material index inputs) have very strong relationship with the quality of finished products. The abnormal changes of these process parameters could result... In the spinning process, some key process parameters( i. e.,raw material index inputs) have very strong relationship with the quality of finished products. The abnormal changes of these process parameters could result in various categories of faulty products. In this paper, a hybrid learning-based model was developed for on-line intelligent monitoring and diagnosis of the spinning process. In the proposed model, a knowledge-based artificial neural network( KBANN) was developed for monitoring the spinning process and recognizing faulty quality categories of yarn. In addition,a rough set( RS)-based rule extraction approach named RSRule was developed to discover the causal relationship between textile parameters and yarn quality. These extracted rules were applied in diagnosis of the spinning process, provided guidelines on improving yarn quality,and were used to construct KBANN. Experiments show that the proposed model significantly improve the learning efficiency, and its prediction precision is improved by about 5. 4% compared with the BP neural network model. 展开更多
关键词 yarn quality prediction rough set(RS) knowledge discovery knowledge-based artificial neural network(KBANN)
下载PDF
FAULT DIAGNOSIS OF ROTATING MACHINERY USING KNOWLEDGE-BASED FUZZY NEURAL NETWORK 被引量:2
7
作者 李如强 陈进 伍星 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第1期99-108,共10页
A novel knowledge-based fuzzy neural network (KBFNN) for fault diagnosis is presented. Crude rules were extracted and the corresponding dependent factors and antecedent coverage factors were calculated firstly from ... A novel knowledge-based fuzzy neural network (KBFNN) for fault diagnosis is presented. Crude rules were extracted and the corresponding dependent factors and antecedent coverage factors were calculated firstly from the diagnostic sample based on rough sets theory. Then the number of rules was used to construct partially the structure of a fuzzy neural network and those factors were implemented as initial weights, with fuzzy output parameters being optimized by genetic algorithm. Such fuzzy neural network was called KBFNN. This KBFNN was utilized to identify typical faults of rotating machinery. Diagnostic results show that it has those merits of shorter training time and higher right diagnostic level compared to general fuzzy neural networks. 展开更多
关键词 rotating machinery fault diagnosis rough sets theory fuzzy sets theory generic algorithm knowledge-based fuzzy neural network
下载PDF
医用氧化锆陶瓷磨削表面粗糙度的声发射智能预测
8
作者 李波 郭力 《南京航空航天大学学报》 CAS CSCD 北大核心 2024年第3期571-576,共6页
医用氧化锆陶瓷(Y-TZP)是较好的齿科修复体材料,为了得到较好的齿科修复体性能对于其制造精度特别是表面粗糙度的要求比较高,但其是硬脆难加工材料,为了提高医用氧化锆陶瓷磨削加工表面质量和加工效率,在对医用氧化锆陶瓷磨削过程中的... 医用氧化锆陶瓷(Y-TZP)是较好的齿科修复体材料,为了得到较好的齿科修复体性能对于其制造精度特别是表面粗糙度的要求比较高,但其是硬脆难加工材料,为了提高医用氧化锆陶瓷磨削加工表面质量和加工效率,在对医用氧化锆陶瓷磨削过程中的声发射信号分频段进行相关性分析的基础上,提取磨削声发射840~850kHz敏感频段信号中与磨削表面粗糙度强相关的12组特征值,构建了具有较高预测精度的随机森林神经网络,最终医用氧化锆陶瓷磨削表面粗糙度声发射预测最大相对误差低于8.37%,研究结果对医用氧化锆陶瓷磨削表面粗糙度在线智能监测有较大的参考价值。 展开更多
关键词 医用氧化锆陶瓷 磨削声发射 表面粗糙度预测 随机森林神经网络 相关性系数
下载PDF
基于邻域粗集神经网络的大数据特征分类系统
9
作者 朱磊 凌嘉敏 《电子设计工程》 2024年第7期97-100,105,共5页
为提升主机元件对大数据的分类准确性,尽可能地避免数据误传,提出基于邻域粗集神经网络的大数据特征分类系统。在邻域粗集神经网络中,完成对邻域系数的粒化处理,通过逼近运算的方式,使神经网络模型快速趋于稳定。选取大数据特征调制信息... 为提升主机元件对大数据的分类准确性,尽可能地避免数据误传,提出基于邻域粗集神经网络的大数据特征分类系统。在邻域粗集神经网络中,完成对邻域系数的粒化处理,通过逼近运算的方式,使神经网络模型快速趋于稳定。选取大数据特征调制信息,借助调制识别器元件控制大数据特征的导出方向,结合关联信道组织完成数据特征的多标合并处理。实验表明,利用该系统可将大数据的单位召回率提升至65%,能够促进主机元件对大数据的准确分类。 展开更多
关键词 邻域粗集 神经网络 大数据特征 粒化处理 调制识别器 多标合并
下载PDF
基于机器学习耦合模型预测FDM零件的表面粗糙度 被引量:1
10
作者 赵陶钰 邵鹏华 《塑料工业》 CAS CSCD 北大核心 2024年第5期116-123,共8页
熔融沉积工艺(FDM)制造的零件表面粗糙度高,不仅影响了零件外观,还降低了性能。采用响应面实验设计,研究了层高(A)、填充密度(B)、喷嘴温度(C)、床层温度(D)和打印速度(E)对聚乳酸(PLA)零件表面粗糙度的影响。同时,将遗传算法(GA)与决策... 熔融沉积工艺(FDM)制造的零件表面粗糙度高,不仅影响了零件外观,还降低了性能。采用响应面实验设计,研究了层高(A)、填充密度(B)、喷嘴温度(C)、床层温度(D)和打印速度(E)对聚乳酸(PLA)零件表面粗糙度的影响。同时,将遗传算法(GA)与决策树(DT)、人工神经元网络(ANN)两种机器学习模型相结合,预测了零件的表面粗糙度。结果表明,A、B、C和E是显著影响零件表面粗糙度的主效应,A×B、A×C、A×E、B×C、B×E、C×E是影响显著的交互效应。GA+DT耦合模型预测PLA零件表面粗糙度的准确性更高,预测值与实验值的相关系数(R2)、均方误差(MSE)和平均绝对误差(MAE)分别为0.952、0.132和0.234,优于GA+ANN的0.823、1.561和1.759。GA+DT模型的预测值与实验值的Pearson相关系数为0.984,而GA+ANN模型仅为0.903,这表明GA+DT模型在预测PLA零件表面粗糙度时准确度更高。 展开更多
关键词 决策树 人工神经元网络 遗传算法 熔融沉积 表面粗糙度 聚乳酸
下载PDF
基于卷积长短时记忆网络的国际平整度指标预测 被引量:1
11
作者 黄凯枫 刘庆华 《计算机与数字工程》 2024年第1期111-115,共5页
公路的快速发展带来了对路面各项指标快速检测和分析的需求,针对路面国际平整度指标的特点,提出使用卷积神经网络与长短期记忆神经网络的结合(CNN-LSTM)对国际平整度指标进行预测,卷积神经网络和长短期记忆神经网络分别学习激光雷达距... 公路的快速发展带来了对路面各项指标快速检测和分析的需求,针对路面国际平整度指标的特点,提出使用卷积神经网络与长短期记忆神经网络的结合(CNN-LSTM)对国际平整度指标进行预测,卷积神经网络和长短期记忆神经网络分别学习激光雷达距离数据的空间维度特征和时间维度特征,完成对平整度指标的预测。实验结果表明,相比较与LSTM网络,CNN-LSTM模型的MAPE值仅有2.3488,准确度和召回率分别达到90.61%和87.89%。通过真实值和预测值的对比可以发现CNN-LSTM更加适用于国际平整度指标的预测。 展开更多
关键词 长短时记忆神经网络 国际平整度预测 卷积神经网络 路面平整度
下载PDF
螺杆铣床主轴振动对螺杆转子表面质量影响分析
12
作者 林泽利 孙兴伟 +3 位作者 杨赫然 张维锋 董祉序 赵泓荀 《振动与冲击》 EI CSCD 北大核心 2024年第16期185-191,246,共8页
为探究螺杆铣床的主轴振动对工件表面质量影响规律。通过螺杆转子外包络铣削加工试验,建立主轴振动特性预测的神经网络模型,使用预测模型预测分析不同加工参数下主轴振动特性的变化规律,分析主轴振动与工件表面粗糙度值之间的影响规律... 为探究螺杆铣床的主轴振动对工件表面质量影响规律。通过螺杆转子外包络铣削加工试验,建立主轴振动特性预测的神经网络模型,使用预测模型预测分析不同加工参数下主轴振动特性的变化规律,分析主轴振动与工件表面粗糙度值之间的影响规律。采用压电集成电路型加速度传感器对铣削过程中主轴振动特征值进行测量,采用TR200便携式表面粗糙度仪测量工件表面粗糙度值。针对主轴振动特征值与表面粗糙度值进行灰色关联度分析,结果表明信号峰值与表面粗糙度值关系显著,表面粗糙度值随信号峰值减小而降低。使用粒子群算法在构建的主轴振动预测模型进行工艺参数寻优,利用试验进行模型精度验证,误差在6%以内。加工试验结果表明采用最佳参数组合加工工件可使主轴振动信号峰值减小,从而获得较高的表面质量。该方法对螺杆转子生产实践工艺选择具有一定的启发和指导意义,也可为金属切削加工的表面质量提升提供参考。 展开更多
关键词 外包络铣削 主轴振动 表面粗糙度 神经网络预测
下载PDF
端面铣削工件表面粗糙度数学模型与实验验证 被引量:3
13
作者 刘德伟 许芝令 +5 位作者 李长河 秦爱国 刘波 张彦彬 Yusuf Suleiman Dambatta 安庆龙 《表面技术》 EI CAS CSCD 北大核心 2024年第4期125-139,共15页
目的针对多种表面粗糙度影响因素的耦合作用使轮廓形成机理不清,导致表面粗糙度数学模型存在表面质量智能管控工业应用预测精度不足的技术难题,建立端面铣削工件表面粗糙度数学模型。方法首先,基于加工运动学机理和刀具几何学分析端面... 目的针对多种表面粗糙度影响因素的耦合作用使轮廓形成机理不清,导致表面粗糙度数学模型存在表面质量智能管控工业应用预测精度不足的技术难题,建立端面铣削工件表面粗糙度数学模型。方法首先,基于加工运动学机理和刀具几何学分析端面铣削工件表面轮廓形成机理,建立考虑刀具跳动的工件表面轮廓模型以及轮廓高度偏差关于铣削力的补偿函数,并通过卷积神经网络(Convolution Neural Network,CNN)进行解析。其次,建立端面铣削表面粗糙度数学模型。最后,进行可转位面铣刀端面铣削ZG32MnMo的实验验证,分别采集轮廓数据与铣削力信号,建立以铣削力为输入、轮廓高度偏差数据为输出的铣削数据集,训练卷积神经网络解析轮廓高度补偿值并验证理论模型的准确性,对比分析考虑刀具跳动的表面粗糙度数学模型与CNN优化考虑刀具跳动的表面粗糙度数学模型的精度。结果CNN优化考虑刀具跳动的表面粗糙度数学模型对加工重叠区与非重叠区内沿刀具进给方向的轮廓算术平均偏差Ra的预测误差分别为18.71%和14.14%,与考虑刀具跳动的表面粗糙度数学模型相比,精度分别提高了10.61%和32.83%,CNN优化考虑刀具跳动的表面粗糙度数学模型对轮廓单元的平均宽度R_(sm)和支承长度率R_(mr(c))的预测结果与实验值吻合。结论考虑刀具跳动以及动态铣削力耦合作用边界条件的表面粗糙度数学模型能够有效预测端面铣削表面粗糙度,可为在质量管控工程中的应用提供理论指导与技术支撑。 展开更多
关键词 铣削 轮廓形成机理 表面粗糙度 铣削力 刀具跳动 卷积神经网络
下载PDF
An Intelligent Sensor Data Preprocessing Method for OCT Fundus Image Watermarking Using an RCNN 被引量:1
14
作者 Jialun Lin Qiong Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1549-1561,共13页
Watermarks can provide reliable and secure copyright protection for optical coherence tomography(OCT)fundus images.The effective image segmentation is helpful for promoting OCT image watermarking.However,OCT images ha... Watermarks can provide reliable and secure copyright protection for optical coherence tomography(OCT)fundus images.The effective image segmentation is helpful for promoting OCT image watermarking.However,OCT images have a large amount of low-quality data,which seriously affects the performance of segmentationmethods.Therefore,this paper proposes an effective segmentation method for OCT fundus image watermarking using a rough convolutional neural network(RCNN).First,the rough-set-based feature discretization module is designed to preprocess the input data.Second,a dual attention mechanism for feature channels and spatial regions in the CNN is added to enable the model to adaptively select important information for fusion.Finally,the refinement module for enhancing the extraction power of multi-scale information is added to improve the edge accuracy in segmentation.RCNN is compared with CE-Net and MultiResUNet on 83 gold standard 3D retinal OCT data samples.The average dice similarly coefficient(DSC)obtained by RCNN is 6%higher than that of CE-Net.The average 95 percent Hausdorff distance(95HD)and average symmetric surface distance(ASD)obtained by RCNN are 32.4%and 33.3%lower than those of MultiResUNet,respectively.We also evaluate the effect of feature discretization,as well as analyze the initial learning rate of RCNN and conduct ablation experiments with the four different models.The experimental results indicate that our method can improve the segmentation accuracy of OCT fundus images,providing strong support for its application in medical image watermarking. 展开更多
关键词 Watermarks image segmentation rough convolutional neural network attentionmechanism feature discretization
下载PDF
基于遗传算法改进BP神经网络的电火花加工参数优化方法
15
作者 王琛 《机械设计与制造工程》 2024年第11期51-56,共6页
针对电火花加工现行智能控制方式下,由于刀尖的震动幅值高,导致加工速度低和加工后零件表面粗糙度高的问题,提出基于遗传算法改进BP神经网络的电火花加工参数优化方法。通过分析电火花加工原理,构建基于BP神经网络电火花加工参数优化模... 针对电火花加工现行智能控制方式下,由于刀尖的震动幅值高,导致加工速度低和加工后零件表面粗糙度高的问题,提出基于遗传算法改进BP神经网络的电火花加工参数优化方法。通过分析电火花加工原理,构建基于BP神经网络电火花加工参数优化模型,以6个加工参数作为模型输入,以加工速度和零件表面粗糙度为模型输出,并将模型期望输出值和实际值之间的误差视作遗传算法的适应度函数,以适应度函数最小化为标准,获取最优权值与阈值作用于BP神经网络,实现电火花加工参数优化。实验结果表明,该方法最低加工速度仅为16.6 mm^(2)/min,表面粗糙度最高仅为6.7μm,有效提升了加工效率。 展开更多
关键词 BP神经网络 遗传算法 电火花 机械加工 参数优化 粗糙度
下载PDF
有限元模拟和神经网络相结合的喷丸处理SAE9254钢疲劳寿命预测
16
作者 申建国 汪舟 +6 位作者 卢伟 罗素晖 王晓丽 罗雄 郑文文 汪帆星 张旭 《机械工程材料》 CAS CSCD 北大核心 2024年第7期77-84,共8页
采用ABAQUS有限元软件建立基于Python脚本的随机多弹丸喷丸模型,对不同弹丸直径、不同弹丸速度和不同喷丸覆盖率下喷丸处理后悬架弹簧用SAE9254钢的残余应力分布和表面粗糙度进行预测,并与试验结果进行对比;基于有限元模拟结果结合神经... 采用ABAQUS有限元软件建立基于Python脚本的随机多弹丸喷丸模型,对不同弹丸直径、不同弹丸速度和不同喷丸覆盖率下喷丸处理后悬架弹簧用SAE9254钢的残余应力分布和表面粗糙度进行预测,并与试验结果进行对比;基于有限元模拟结果结合神经网络模型对试验钢的疲劳寿命进行预测,并进行试验验证。结果表明:模拟得到SAE9254钢的残余应力沿深度方向的变化曲线与试验结果吻合较好,最大残余压应力的相对误差约为14.77%,表面粗糙度的相对误差约为3.18%,建立的随机多弹丸喷丸模型能够准确地预测SAE9254钢喷丸后的残余应力分布及表面粗糙度。采用有限元模拟与神经网络相结合的方法得到的疲劳寿命预测值和试验值的平均相对误差为6.85%,该方法可以准确地预测SAE9254钢的疲劳寿命。 展开更多
关键词 SAE9254钢 喷丸 表面粗糙度 有限元模拟 神经网络 疲劳寿命
下载PDF
一种基于Rough Sets和模糊神经网络的规则获取的方法 被引量:6
17
作者 武妍 施鸿宝 《计算机工程与应用》 CSCD 北大核心 1999年第7期7-9,23,共4页
该文提出了一种基于RoughSets思想获取初始规则,并通过模糊神经网络优化,最后再进行简化获取模糊规则,及模糊系统参数学习的方法。并通过实例进行了自动列车运行系统仿真。文中还基于上述实例,将这种基于模糊神经网络的学习与控制... 该文提出了一种基于RoughSets思想获取初始规则,并通过模糊神经网络优化,最后再进行简化获取模糊规则,及模糊系统参数学习的方法。并通过实例进行了自动列车运行系统仿真。文中还基于上述实例,将这种基于模糊神经网络的学习与控制方法与标准的BP网络和基本的模糊系统方法进行了比较,并总结了这种方法的特点。结论表明,该文所提出的模糊规则生成和模糊系统学习方法是行之有效的。 展开更多
关键词 模糊神经网络 模糊规则 规则获取 自动列车
下载PDF
基于“SC_ISSA-BP网络”驱动的激光熔覆表面粗糙度优化
18
作者 马子煜 孙耀宁 罗建清 《有色金属工程》 CAS 北大核心 2024年第9期49-59,共11页
在激光熔覆过程中,工艺参数多样化,导致结果控制表现出非线性关系。通过深入分析各参数对熔覆层的影响,可以快速获得最优工艺,提高熔覆层的性能,推动激光熔覆技术的应用。基于正交实验设计,对实验数据进行极差分析,研究工艺参数对激光熔... 在激光熔覆过程中,工艺参数多样化,导致结果控制表现出非线性关系。通过深入分析各参数对熔覆层的影响,可以快速获得最优工艺,提高熔覆层的性能,推动激光熔覆技术的应用。基于正交实验设计,对实验数据进行极差分析,研究工艺参数对激光熔覆CoCrFeNiMo_(0.2)涂层表面粗糙度的影响。通过超景深扫描仪对实验样本进行微观分析,获得其表面粗糙度值。根据算法对工艺参数进行优化,探讨激光功率、送粉速度、扫描速率和搭接率多因素耦合作用下对激光熔覆多道搭接涂层表面粗糙度的影响,以优化最佳工艺参数组合,同时获得最优表面粗糙度。以拟合程度为指标对比优化模型,BP神经网络为94.79%,SSA-BP神经网络为96.981%,SC_ISSABP神经为98.528%。传统BP神经网络的误差指标均方误差根RMSE为58.3858μm,而SSA-BP神经网络的RMSE为51.2974μm,SC_ISSABP神经网络为43.9408μm。SC_ISSABP神经网络的优化能力最为明显。 展开更多
关键词 激光熔覆技术 工艺参数 粗糙度优化 人工神经网络 麻雀优化算法
下载PDF
基于Rough集和神经网络的烧结过程异常诊断研究 被引量:2
19
作者 张小平 张继生 +1 位作者 王杰 历君 《烧结球团》 北大核心 2005年第4期24-26,共3页
为了及时、准确诊断烧结过程的异常状况并及时消除异常,本文将Rough集和神经网络相结合,建立了烧结过程异常状况智能诊断系统。基本思想是首先利用Rough集对知识库进行约简,然后利用神经网络对约简后的知识进行分层融合。该系统具有简... 为了及时、准确诊断烧结过程的异常状况并及时消除异常,本文将Rough集和神经网络相结合,建立了烧结过程异常状况智能诊断系统。基本思想是首先利用Rough集对知识库进行约简,然后利用神经网络对约简后的知识进行分层融合。该系统具有简化样本、适应性强和不易陷入局部最小点等特点,能有效处理异常中的噪声或不相容的信息。 展开更多
关键词 异常 诊断 rough 神经网络 烧结过程 诊断研究 智能诊断系统 基本思想 分层融合 有效处理
下载PDF
地理信息知识获取Rough-NN模型研究 被引量:4
20
作者 韩敏 孙燕楠 许士国 《信息与控制》 CSCD 北大核心 2005年第1期104-108,114,共6页
提出了一种粗糙集结合神经网络的粗糙集神经网络模型,对具有高度自相关性的地理信息进行知识获取.主要思想是利用辨别矩阵形成约简算法,得到最简的if-then规则;然后构造三层神经网络模拟最简规则,其中网络的输入输出由本文提出的参数训... 提出了一种粗糙集结合神经网络的粗糙集神经网络模型,对具有高度自相关性的地理信息进行知识获取.主要思想是利用辨别矩阵形成约简算法,得到最简的if-then规则;然后构造三层神经网络模拟最简规则,其中网络的输入输出由本文提出的参数训练方法确定.本文利用VB实现该模型,并对松花江流域的洪涝干旱灾情进行了仿真实验,结果表明该模型可以快速地获取最简的if then规则,得到正确的决策结果.* 展开更多
关键词 粗糙集 知识获取 神经网络 规则
下载PDF
上一页 1 2 59 下一页 到第
使用帮助 返回顶部