期刊文献+
共找到1,012篇文章
< 1 2 51 >
每页显示 20 50 100
A Generalized Rough Set Approach to Attribute Generalization in Data Mining 被引量:4
1
作者 李天瑞 徐扬 《Journal of Modern Transportation》 2000年第1期69-75,共7页
This paper presents a generalized method for updating approximations of a concept incrementally, which can be used as an effective tool to deal with dynamic attribute generalization. By combining this method and the L... This paper presents a generalized method for updating approximations of a concept incrementally, which can be used as an effective tool to deal with dynamic attribute generalization. By combining this method and the LERS inductive learning algorithm, it also introduces a generalized quasi incremental algorithm for learning classification rules from data bases. 展开更多
关键词 rough set data mining inductive learning
下载PDF
Domain-Oriented Data-Driven Data Mining Based on Rough Sets 被引量:1
2
作者 Guoyin Wang 《南昌工程学院学报》 CAS 2006年第2期46-46,共1页
Data mining (also known as Knowledge Discovery in Databases - KDD) is defined as the nontrivial extraction of implicit, previously unknown, and potentially useful information from data. The aims and objectives of data... Data mining (also known as Knowledge Discovery in Databases - KDD) is defined as the nontrivial extraction of implicit, previously unknown, and potentially useful information from data. The aims and objectives of data mining are to discover knowledge of interest to user needs.Data mining is really a useful tool in many domains such as marketing, decision making, etc. However, some basic issues of data mining are ignored. What is data mining? What is the product of a data mining process? What are we doing in a data mining process? Is there any rule we should obey in a data mining process? In order to discover patterns and knowledge really interesting and actionable to the real world Zhang et al proposed a domain-driven human-machine-cooperated data mining process.Zhao and Yao proposed an interactive user-driven classification method using the granule network. In our work, we find that data mining is a kind of knowledge transforming process to transform knowledge from data format into symbol format. Thus, no new knowledge could be generated (born) in a data mining process. In a data mining process, knowledge is just transformed from data format, which is not understandable for human, into symbol format,which is understandable for human and easy to be used.It is similar to the process of translating a book from Chinese into English.In this translating process,the knowledge itself in the book should remain unchanged. What will be changed is the format of the knowledge only. That is, the knowledge in the English book should be kept the same as the knowledge in the Chinese one.Otherwise, there must be some mistakes in the translating proces, that is, we are transforming knowledge from one format into another format while not producing new knowledge in a data mining process. The knowledge is originally stored in data (data is a representation format of knowledge). Unfortunately, we can not read, understand, or use it, since we can not understand data. With this understanding of data mining, we proposed a data-driven knowledge acquisition method based on rough sets. It also improved the performance of classical knowledge acquisition methods. In fact, we also find that the domain-driven data mining and user-driven data mining do not conflict with our data-driven data mining. They could be integrated into domain-oriented data-driven data mining. It is just like the views of data base. Users with different views could look at different partial data of a data base. Thus, users with different tasks or objectives wish, or could discover different knowledge (partial knowledge) from the same data base. However, all these partial knowledge should be originally existed in the data base. So, a domain-oriented data-driven data mining method would help us to extract the knowledge which is really existed in a data base, and really interesting and actionable to the real world. 展开更多
关键词 data mining data-DRIVEN USER-DRIVEN domain-driven KDD Machine Learning knowledge Acquisition rough sets
下载PDF
Rough set and radial basis function neural network based insulation data mining fault diagnosis for power transformer
3
作者 董立新 肖登明 刘奕路 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2007年第2期263-268,共6页
Rough set (RS) and radial basis function neural network (RBFNN) based insulation data mining fault diagnosis for power transformer is proposed. On the one hand rough set is used as front of RBFNN to simplify the input... Rough set (RS) and radial basis function neural network (RBFNN) based insulation data mining fault diagnosis for power transformer is proposed. On the one hand rough set is used as front of RBFNN to simplify the input of RBFNN and mine the rules. The mined rules whose “confidence” and “support” is higher than requirement are used to offer fault diagnosis service for power transformer directly. On the other hand the mining samples corresponding to the mined rule, whose “confidence and support” is lower than requirement, are used to be training samples set of RBFNN and these samples are clustered by rough set. The center of each clustering set is used to be center of radial basis function, i.e., as the hidden layer neuron. The RBFNN is structured with above base, which is used to diagnose the case that can not be diagnosed by mined simplified valuable rules based on rough set. The advantages and effectiveness of this method are verified by testing. 展开更多
关键词 rough set (RS) radial basis function neural network (RBFNN) data mining fault diagnosis
下载PDF
An Interpretation of Multi-pole Sonic Logging Data Mining Based on Rough Sets
4
作者 ZENG Xiao-hui SHI Yi-bing LIAN Yi 《通讯和计算机(中英文版)》 2007年第1期8-10,共3页
关键词 声波测井 数据挖掘 数值模拟 油田
下载PDF
Web Mining Model Based on Rough Set Theory
5
作者 吴冰 赵林度 《Journal of Southeast University(English Edition)》 EI CAS 2002年第1期54-58,共5页
Due to a great deal of valuable information contained in the Web log file, the result of Web mining can be used to enhance the decision making for electronic commerce (EC) operation and management. Because of ambiguo... Due to a great deal of valuable information contained in the Web log file, the result of Web mining can be used to enhance the decision making for electronic commerce (EC) operation and management. Because of ambiguous and abundance of the Web log file, the least decision making model based on rough set theory was presented for Web mining. And an example was given to explain the model. The model can predigest the decision making table, so that the least solution of the table can be acquired. According to the least solution, the corresponding decision for individual service can be made in sequence. Web mining based on rough set theory is also currently the original and particular method. 展开更多
关键词 Web mining rough sets electronic commerce knowledge reasoning Web log
下载PDF
Applied Approaches of Rough Set Theory to Web Mining 被引量:1
6
作者 孙铁利 教巍巍 《Journal of Donghua University(English Edition)》 EI CAS 2006年第6期117-120,共4页
Rough set theory is a new soft computing tool, and has received much attention of researchers around the world. It can deal with incomplete and uncertain information. Now, it has been applied in many areas successfull... Rough set theory is a new soft computing tool, and has received much attention of researchers around the world. It can deal with incomplete and uncertain information. Now, it has been applied in many areas successfully. This paper introduces the basic concepts of rough set and discusses its applications in Web mining. In particular, some applications of rough set theory to intelligent information processing are emphasized. 展开更多
关键词 rough set Web mining knowledge discovery uncertainty.
下载PDF
A New Approach for Knowledge Discovery in Distributed Databases Using Fragmented Data Storage Model
7
作者 Masoud Pesaran Behbahani Islam Choudhury Souheil Khaddaj 《Chinese Business Review》 2013年第12期834-845,共12页
Since the early 1990, significant progress in database technology has provided new platform for emerging new dimensions of data engineering. New models were introduced to utilize the data sets stored in the new genera... Since the early 1990, significant progress in database technology has provided new platform for emerging new dimensions of data engineering. New models were introduced to utilize the data sets stored in the new generations of databases. These models have a deep impact on evolving decision-support systems. But they suffer a variety of practical problems while accessing real-world data sources. Specifically a type of data storage model based on data distribution theory has been increasingly used in recent years by large-scale enterprises, while it is not compatible with existing decision-support models. This data storage model stores the data in different geographical sites where they are more regularly accessed. This leads to considerably less inter-site data transfer that can reduce data security issues in some circumstances and also significantly improve data manipulation transactions speed. The aim of this paper is to propose a new approach for supporting proactive decision-making that utilizes a workable data source management methodology. The new model can effectively organize and use complex data sources, even when they are distributed in different sites in a fragmented form. At the same time, the new model provides a very high level of intellectual management decision-support by intelligent use of the data collections through utilizing new smart methods in synthesizing useful knowledge. The results of an empirical study to evaluate the model are provided. 展开更多
关键词 data mining decision-support system distributed databases knowledge discovery in database (KDD)
下载PDF
Risk Analysis Technique on Inconsistent Interview Big Data Based on Rough Set Approach
8
作者 Riasat Azim Abm Munibur Rahman +1 位作者 Shawon Barua Israt Jahan 《Journal of Data Analysis and Information Processing》 2016年第3期101-114,共14页
Rough set theory is relativly new to area of soft computing to handle the uncertain big data efficiently. It also provides a powerful way to calculate the importance degree of vague and uncertain big data to help in d... Rough set theory is relativly new to area of soft computing to handle the uncertain big data efficiently. It also provides a powerful way to calculate the importance degree of vague and uncertain big data to help in decision making. Risk assessment is very important for safe and reliable investment. Risk management involves assessing the risk sources and designing strategies and procedures to mitigate those risks to an acceptable level. In this paper, we emphasize on classification of different types of risk factors and find a simple and effective way to calculate the risk exposure.. The study uses rough set method to classify and judge the safety attributes related to investment policy. The method which based on intelligent knowledge accusation provides an innovative way for risk analysis. From this approach, we are able to calculate the significance of each factor and relative risk exposure based on the original data without assigning the weight subjectively. 展开更多
关键词 rough set Theory Big data Risk Analysis data mining Variable Weight Significance of Attribute Core Attribute Attribute Reduction
下载PDF
Decentralized Association Rule Mining on Web Using Rough Set Theory
9
作者 Youquan He 《通讯和计算机(中英文版)》 2005年第7期29-32,共4页
下载PDF
基于Rough Set理论的“数据浓缩” 被引量:239
10
作者 王珏 王任 +4 位作者 苗夺谦 郭萌 阮永韶 袁小红 赵凯 《计算机学报》 EI CSCD 北大核心 1998年第5期393-400,共8页
本文讨论了基于RoushSet(RS)理论数据浓缩的几个问题.首先,介绍了一个基于差别矩阵的属性约简策略,并给出了数据浓缩的测量;然后分析了对UCI机器学习数据库40余个例子的数据浓缩的结果;最后,我们强调了在数据浓缩中例外的重要... 本文讨论了基于RoushSet(RS)理论数据浓缩的几个问题.首先,介绍了一个基于差别矩阵的属性约简策略,并给出了数据浓缩的测量;然后分析了对UCI机器学习数据库40余个例子的数据浓缩的结果;最后,我们强调了在数据浓缩中例外的重要性,并讨论了不一致数据浓缩. 展开更多
关键词 数据浓缩 数据挖掘 RS理论 数据库
下载PDF
基于Rough Set的空间数据分类方法 被引量:25
11
作者 石云 263.net +1 位作者 孙玉芳 左春 《软件学报》 EI CSCD 北大核心 2000年第5期673-678,共6页
近来 ,数据采掘的研究已从关系型和事务型数据库扩展到空间数据库 .空间数据采掘是一个很有发展前景的领域 ,其中空间数据分类的研究尚处在起步阶段 .该文分析和比较了现有的几个空间数据分类方法的利和弊 ,提出利用 Rough Set的三阶段... 近来 ,数据采掘的研究已从关系型和事务型数据库扩展到空间数据库 .空间数据采掘是一个很有发展前景的领域 ,其中空间数据分类的研究尚处在起步阶段 .该文分析和比较了现有的几个空间数据分类方法的利和弊 ,提出利用 Rough Set的三阶段空间分类过程 .实验结果表明 。 展开更多
关键词 roughset 分类 数据采掘 空间数据 空间数据库
下载PDF
基于Rough Set的电子邮件分类系统 被引量:8
12
作者 李志君 王国胤 吴渝 《计算机科学》 CSCD 北大核心 2004年第3期58-60,66,共4页
随着电子邮件的广泛使用,通过它进行不良信息传播的事件不断发生.电子邮件分类问题成为了网络安全研究的热点。本文通过对电子邮件头进行分析,运用Rough Set理论中相关的数据分析技术,建立了电子邮件分类系统的模型,并进行了实验测试,... 随着电子邮件的广泛使用,通过它进行不良信息传播的事件不断发生.电子邮件分类问题成为了网络安全研究的热点。本文通过对电子邮件头进行分析,运用Rough Set理论中相关的数据分析技术,建立了电子邮件分类系统的模型,并进行了实验测试,得到了满意的结果。 展开更多
关键词 电子邮件分类系统 邮件收发工具 rough set 计算机网络 邮件服务器 网络安全 信息安全
下载PDF
基于网络环境的分布式KDD及Data Mining研究 被引量:6
13
作者 何炎祥 彭锋 +2 位作者 宋文欣 熊汉卫 陈莘萌 《小型微型计算机系统》 CSCD 北大核心 1999年第10期744-746,共3页
本文针对KDD 的研究现状及其面临的挑战,主要讨论了基于网络环境下,面向多个站点机、多种数据库、多类数据源的分布式KDD 和Data Mining 的整体方案和实验系统模型,研究内容包括高效分布式开采算法,KDD 过程的... 本文针对KDD 的研究现状及其面临的挑战,主要讨论了基于网络环境下,面向多个站点机、多种数据库、多类数据源的分布式KDD 和Data Mining 的整体方案和实验系统模型,研究内容包括高效分布式开采算法,KDD 过程的无缝集成,KDD 中的知识表示。 展开更多
关键词 知识发现 数据开采 知识表示 可视化 数据库系统
下载PDF
基于不完备信息系统的Rough Set决策规则提取方法 被引量:3
14
作者 何明 傅向华 马兆丰 《计算机应用》 CSCD 北大核心 2003年第11期6-8,共3页
对象信息的不完备性是从实例中归纳学习的最大障碍。针对不完备的信息,研究了基于不完备信息系统的粗糙集决策规则提取方法,利用分层递减约简算法,通过实例有效地分析和处理了含有缺省数据和不精确数据的信息系统,扩展了粗糙集的应用领域。
关键词 rough set 不完备信息系统 决策规则 数据挖掘 数据库知识发现
下载PDF
基于 Rough Set 的知识发现系统 被引量:2
15
作者 胡可云 王志海 徐本柱 《合肥工业大学学报(自然科学版)》 CAS CSCD 1998年第1期71-74,共4页
RoughSet理论是近年来出现的处理模糊和不确定性的数学工具,已广泛应用于人工智能的许多领域特别是KDD领域。文章介绍了RoughSet理论的基本思想,并着重讨论了几个基于RoughSet理论的典型KDD系统。
关键词 roughset 知识发现 数据库知识发现 人工智能
下载PDF
基于Rough Set理论发现最小归纳依赖关系的方法研究 被引量:3
16
作者 程岩 黄梯云 《计算机工程》 CAS CSCD 北大核心 2000年第3期26-27,48,共3页
归纳依赖关系是数据库研究领域的重要概念,在数据库中自动发现最小归纳依赖关系对数据采掘具有重大意义。介绍了归纳依赖关系的概念、原理及利用Rough Set理论度量数据属性间归纳依赖强度的方法,提出了一个在数据库中自动发... 归纳依赖关系是数据库研究领域的重要概念,在数据库中自动发现最小归纳依赖关系对数据采掘具有重大意义。介绍了归纳依赖关系的概念、原理及利用Rough Set理论度量数据属性间归纳依赖强度的方法,提出了一个在数据库中自动发现最小归纳依赖关系的算法。 展开更多
关键词 数据采掘 数据依赖 数据库 粗糙集理论
下载PDF
基于Rough Sets的中医指症挖掘研究与应用 被引量:2
17
作者 丁卫平 管致锦 顾春华 《计算机工程与应用》 CSCD 北大核心 2008年第7期234-237,共4页
针对中医病历数据库中指症样本维数较大、数据特征和属性冗余量较多等特征,在对Rough Sets基本理论和属性约简算法研究的基础上,提出了将属性频度和属性重要性相结合的GENRED_GROWTH中医指症挖掘算法,并进行了基于GENRED_GROWTH的中医... 针对中医病历数据库中指症样本维数较大、数据特征和属性冗余量较多等特征,在对Rough Sets基本理论和属性约简算法研究的基础上,提出了将属性频度和属性重要性相结合的GENRED_GROWTH中医指症挖掘算法,并进行了基于GENRED_GROWTH的中医指症挖掘原型系统设计与实现。通过分析和实验结果表明:该算法能较好地进行中医指症属性约简,分类精度较高,并且能抽取中医指症相关诊断规则以辅助医生的诊断和治疗。 展开更多
关键词 rough setS 属性约简 中医指症 数据挖掘
下载PDF
基于Rough Set的属性及属性值简约的一种算法 被引量:7
18
作者 朱红 《湘潭大学自然科学学报》 CAS CSCD 2002年第3期36-39,共4页
属性及属性值的约简是RoughSet理论的核心内容之一 ,基于此 ,我们通过最少的信息量也能做出正确的判断 .利用RoughSet理论中关于相对正域的概念 ,给出了一种求最少属性及最少属性值 (即核值表 )的算法 。
关键词 rough set 粗糙集 数据挖掘 核值表 最小条件属性集 属性核算 粗集理论 简化算法
下载PDF
Rough Set理论在数据挖掘中的应用 被引量:1
19
作者 旷海兰 罗可 王樱 《衡阳师范学院学报》 2005年第3期81-84,共4页
RoughSet理论是一种新的处理模糊和不确定信息的数学工具。近20年来,RoughSet理论由于在知识发现等领域的成功应用而受到广泛关注,并得到飞速发展,已成为数据挖掘中的一个很重要的方法。作者讨论了RoughSet理论在数据挖掘过程中的应用,... RoughSet理论是一种新的处理模糊和不确定信息的数学工具。近20年来,RoughSet理论由于在知识发现等领域的成功应用而受到广泛关注,并得到飞速发展,已成为数据挖掘中的一个很重要的方法。作者讨论了RoughSet理论在数据挖掘过程中的应用,并对RoughSet理论在数据挖掘应用中存在的问题和挑战提出了自己的见解。 展开更多
关键词 rough set理论 数据挖掘 知识发现
下载PDF
Rough Set理论研究及其在水上交通事故分析的应用 被引量:2
20
作者 梁第 张铭丽 《科学技术与工程》 2009年第13期3916-3919,共4页
水上交通事故系统中数据多维、稀疏、不全,有效地识别和发现事故数据的新模式及其内在规律能够预防和减少水上交通事故的发生。从数据挖掘的角度出发,应用了基于属性频度的约简算法和改进的值约简算法的结合对(2000~2004)年水上发生的2... 水上交通事故系统中数据多维、稀疏、不全,有效地识别和发现事故数据的新模式及其内在规律能够预防和减少水上交通事故的发生。从数据挖掘的角度出发,应用了基于属性频度的约简算法和改进的值约简算法的结合对(2000~2004)年水上发生的20起具有一定代表性的典型案例进行分析,并加入相关的支持度和置信度,以期为水上交通的管理提供决策支持。 展开更多
关键词 水上交通事故 数据挖掘 rough set理论 属性约简 属性值约简
下载PDF
上一页 1 2 51 下一页 到第
使用帮助 返回顶部