期刊文献+
共找到543篇文章
< 1 2 28 >
每页显示 20 50 100
A New Method for Constructing Decision Tree Based on Rough Sets Theory 被引量:1
1
作者 Longjun Huang Caiying Zhou +1 位作者 Minghe Huang Zhiming Zhuang 《南昌工程学院学报》 CAS 2006年第2期122-125,共4页
Decision trees induction algorithms have been used for classification in a wide range of application domains. In the process of constructing a tree, the criteria of selecting test attributes will influence the classif... Decision trees induction algorithms have been used for classification in a wide range of application domains. In the process of constructing a tree, the criteria of selecting test attributes will influence the classification accuracy of the tree.In this paper,the degree of dependency of decision attribute to condition attribute,based on rough set theory,is used as a heuristic for selecting the attribute that will best separate the samples into individual classes.The result of an example shows that compared with the entropy-based approach,our approach is a better way to select nodes for constructing decision trees. 展开更多
关键词 rough sets dependency of attributes classification decision tree
下载PDF
Knowledge discovery method for feature-decision level fusion of multiple classifiers 被引量:1
2
作者 孙亮 韩崇昭 《Journal of Southeast University(English Edition)》 EI CAS 2006年第2期222-227,共6页
To improve the performance of the multiple classifier system, a new method of feature-decision level fusion is proposed based on knowledge discovery. In the new method, the base classifiers operate on different featur... To improve the performance of the multiple classifier system, a new method of feature-decision level fusion is proposed based on knowledge discovery. In the new method, the base classifiers operate on different feature spaces and their types depend on different measures of between-class separability. The uncertainty measures corresponding to each output of each base classifier are induced from the established decision tables (DTs) in the form of mass function in the Dempster-Shafer theory (DST). Furthermore, an effective fusion framework is built at the feature-decision level on the basis of a generalized rough set model and the DST. The experiment for the classification of hyperspectral remote sensing images shows that the performance of the classification can be improved by the proposed method compared with that of plurality voting (PV). 展开更多
关键词 multiple classifier fusion knowledge discovery Dempster-Shafer theory generalized rough set HYPERSPECTRAL
下载PDF
Softζ-Rough Set and Its Applications in Decision Making of Coronavirus 被引量:1
3
作者 M.A.El Safty Samirah Al Zahrani +1 位作者 M.K.El-Bably M.El Sayed 《Computers, Materials & Continua》 SCIE EI 2022年第1期267-285,共19页
In this paper,we present a proposed method for generating a soft rough approximation as a modification and generalization of Zhaowen et al.approach.Comparisons were obtained between our approach and the previous study... In this paper,we present a proposed method for generating a soft rough approximation as a modification and generalization of Zhaowen et al.approach.Comparisons were obtained between our approach and the previous study and also.Eventually,an application on Coronavirus(COVID-19)has been presented,illustrated using our proposed concept,and some influencing results for symptoms of Coronavirus patients have been deduced.Moreover,following these concepts,we construct an algorithm and apply it to a decision-making problem to demonstrate the applicability of our proposed approach.Finally,a proposed approach that competes with others has been obtained,as well as realistic results for patients with Coronavirus.Moreover,we used MATLAB programming to obtain the results;these results are consistent with those of theWorld Health Organization and an accurate proposal competing with the method of Zhaowen et al.has been studied.Therefore,it is recommended that our proposed concept be used in future decision making. 展开更多
关键词 Soft set soft rough set softζrough set COVID-19 intelligence discovery decision making
下载PDF
Yarn Quality Prediction and Diagnosis Based on Rough Set and Knowledge-Based Artificial Neural Network 被引量:1
4
作者 杨建国 徐兰 +1 位作者 项前 刘彬 《Journal of Donghua University(English Edition)》 EI CAS 2014年第6期817-823,共7页
In the spinning process, some key process parameters( i. e.,raw material index inputs) have very strong relationship with the quality of finished products. The abnormal changes of these process parameters could result... In the spinning process, some key process parameters( i. e.,raw material index inputs) have very strong relationship with the quality of finished products. The abnormal changes of these process parameters could result in various categories of faulty products. In this paper, a hybrid learning-based model was developed for on-line intelligent monitoring and diagnosis of the spinning process. In the proposed model, a knowledge-based artificial neural network( KBANN) was developed for monitoring the spinning process and recognizing faulty quality categories of yarn. In addition,a rough set( RS)-based rule extraction approach named RSRule was developed to discover the causal relationship between textile parameters and yarn quality. These extracted rules were applied in diagnosis of the spinning process, provided guidelines on improving yarn quality,and were used to construct KBANN. Experiments show that the proposed model significantly improve the learning efficiency, and its prediction precision is improved by about 5. 4% compared with the BP neural network model. 展开更多
关键词 yarn quality prediction rough set(RS) knowledge discovery knowledge-based artificial neural network(KBANN)
下载PDF
Process Auxiliary Decision-making Based on Rough Sets and Regulation Distance Computing
5
作者 FANG Hui TAN Jianrong +1 位作者 YIN Guofu LI Zhongkai 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第4期528-534,共7页
Computer aided process planning(CAPP) is an important content of computer integrated manufacturing, and intelligentizing is the orientation of development of CAPP. Process planning has characters of empirical and ti... Computer aided process planning(CAPP) is an important content of computer integrated manufacturing, and intelligentizing is the orientation of development of CAPP. Process planning has characters of empirical and time-consuming to finalize, and the same technical aim always can be achieved by different process schemes, so intelligentizing of process decision making always be a difficult point of CAPP and computer integrated manufacturing (CIM). For the purpose of intelligent aided process decision making and reuse of process resource, this paper proposed a decision making method based on rough sets(RS) and regular distance computing. The main contents and methods of process planning decision making are analyzed under agile response manufacturing environment, the concept of process knowledge granule is represented, and the methods of process knowledge granule partitioning and granularity analysis are put forward. Based on the theory of RS and combined the method of process attributes importance identification, the paper brought forward a computing model for process scheme regulation distance under the same attribute conditions, and conflict resolution strategy was introduced to acquire process scheme fit for actual situation of enterprise's manufacturing resources, so as to realize process resources' conflict resolution and quick excavate and reuse of enterprises' existing process knowledge, to advance measures of process decision making and improve the rationality and capability of agile response of process planning. 展开更多
关键词 process planning decision-MAKING rough sets knowledge granule GRANULARITY regulation distance
下载PDF
Application Study of Rough Set in Remote Sensing for Crops
6
作者 朱庆伟 郭达志 《Agricultural Science & Technology》 CAS 2013年第5期787-789,802,共4页
[Objective] This study aimed to improve classification accuracy of RS images using rough set theory in the growth of crops. [Method] Technique methods of data mining and knowledge discovery have been used. The develop... [Objective] This study aimed to improve classification accuracy of RS images using rough set theory in the growth of crops. [Method] Technique methods of data mining and knowledge discovery have been used. The development status of spatial data mining and knowledge discovery (SDMKD) is presented and data mining techniques in remote sensing were deeply analyzed. Then, SDMKD of TM image are researched using method of rough set, mainly including four methods (rough set, apriori algorithms, inductive learning, clustering). [Result] The proposed method raises efficiency of land use and land reclaim. Based on the SDMKD, the characteristics of TM showed that the information after using rough set is more intensive than that of none. Especially, much better results can be gained while kinds of corps are less than five. [Conclusion] This study laid significant basis for further research on data mining in the growth of crops. 展开更多
关键词 knowledge discovery rough set Remote sensing CORPS
下载PDF
Applied Approaches of Rough Set Theory to Web Mining 被引量:1
7
作者 孙铁利 教巍巍 《Journal of Donghua University(English Edition)》 EI CAS 2006年第6期117-120,共4页
Rough set theory is a new soft computing tool, and has received much attention of researchers around the world. It can deal with incomplete and uncertain information. Now, it has been applied in many areas successfull... Rough set theory is a new soft computing tool, and has received much attention of researchers around the world. It can deal with incomplete and uncertain information. Now, it has been applied in many areas successfully. This paper introduces the basic concepts of rough set and discusses its applications in Web mining. In particular, some applications of rough set theory to intelligent information processing are emphasized. 展开更多
关键词 rough set Web mining knowledge discovery uncertainty.
下载PDF
一种基于Rough Set理论的属性约简及规则提取方法 被引量:285
8
作者 常犁云 263.net +3 位作者 王国胤 263.net 吴渝 263.net 《软件学报》 EI CSCD 北大核心 1999年第11期1206-1211,共6页
该文针对RoughSet理论中属性约简和值约简这两个重要问题进行了研究,提出了一种借助于可辨识矩阵(discernibilitymatrix)和数学逻辑运算得到最佳属性约简的新方法.同时,借助该矩阵还可以方便地构造基于RoushSet理论的多变量决策树... 该文针对RoughSet理论中属性约简和值约简这两个重要问题进行了研究,提出了一种借助于可辨识矩阵(discernibilitymatrix)和数学逻辑运算得到最佳属性约简的新方法.同时,借助该矩阵还可以方便地构造基于RoushSet理论的多变量决策树.另外,对目前广泛采用的一种值约简策略进行了改进,最终使得到的规则进一步简化. 展开更多
关键词 roughset理论 属性约简 规则提取 数据库系统
下载PDF
基于不完备信息系统的Rough Set决策规则提取方法 被引量:3
9
作者 何明 傅向华 马兆丰 《计算机应用》 CSCD 北大核心 2003年第11期6-8,共3页
对象信息的不完备性是从实例中归纳学习的最大障碍。针对不完备的信息,研究了基于不完备信息系统的粗糙集决策规则提取方法,利用分层递减约简算法,通过实例有效地分析和处理了含有缺省数据和不精确数据的信息系统,扩展了粗糙集的应用领域。
关键词 rough set 不完备信息系统 决策规则 数据挖掘 数据库知识发现
下载PDF
基于Rough Set的油液故障诊断系统的知识发现 被引量:3
10
作者 王金涛 吕晓军 谢友柏 《摩擦学学报》 EI CAS CSCD 北大核心 2003年第6期529-532,共4页
结合RoughSet理论和摩擦学系统的特点,讨论了油液故障诊断系统的不协调性.在包含度方法的基础上,将普通二元关系进行推广,提出了一种不协调油液故障诊断系统知识发现模型,给出具体的运算方法,并通过试验实例验证了该模型的有效性.结果表... 结合RoughSet理论和摩擦学系统的特点,讨论了油液故障诊断系统的不协调性.在包含度方法的基础上,将普通二元关系进行推广,提出了一种不协调油液故障诊断系统知识发现模型,给出具体的运算方法,并通过试验实例验证了该模型的有效性.结果表明,该模型在最大分布约简的基础上进行油液诊断知识获取,能够很好地完成不确定性问题的推理,并且可以推导出具有最大可信度的油液诊断知识规则. 展开更多
关键词 油液分析 故障诊断 rough set理论 知识发现
下载PDF
基于Rough Set的最简决策树确定算法的研究 被引量:8
11
作者 朱红 《计算机工程与应用》 CSCD 北大核心 2003年第13期129-131,共3页
决策树是一种有效用于分类的数据采掘方法,有确定性和非确定性决策树。传统的方法是通过信息熵的计算去生成决策树,计算量大。目前有人用RS方法去计算信息熵,但存在局限性。该文将指出其局限性,并给出了一种有效的属性选择算法,确定了... 决策树是一种有效用于分类的数据采掘方法,有确定性和非确定性决策树。传统的方法是通过信息熵的计算去生成决策树,计算量大。目前有人用RS方法去计算信息熵,但存在局限性。该文将指出其局限性,并给出了一种有效的属性选择算法,确定了最简确定性和非确定性决策树的判别准则及其通用生成算法。 展开更多
关键词 粗糙集 知识发现 决策树
下载PDF
基于Rough Sets-C4.5的故障征兆提取与判别 被引量:1
12
作者 王庆 巴德纯 孟祥志 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第10期1138-1141,共4页
针对原始信息系统往往存在大量重复样本和冗余属性,从而影响实际故障诊断的精度和速度这一问题,介绍了一种基于粗糙集和决策树C4.5算法相融合的故障诊断模型,用于设备的精确和快速故障诊断.利用粗糙集具有较强的处理不确定和不完备信息... 针对原始信息系统往往存在大量重复样本和冗余属性,从而影响实际故障诊断的精度和速度这一问题,介绍了一种基于粗糙集和决策树C4.5算法相融合的故障诊断模型,用于设备的精确和快速故障诊断.利用粗糙集具有较强的处理不确定和不完备信息的能力,对原始样本集进行离散化及约简处理;同时,利用决策树C4.5算法对约简后的决策表进行快速学习并形成树状故障分类器.以实例介绍了利用该模型进行故障诊断的完整过程. 展开更多
关键词 粗糙集 属性 约简 决策树 故障诊断
下载PDF
Rough Set理论在数据挖掘中的应用 被引量:1
13
作者 旷海兰 罗可 王樱 《衡阳师范学院学报》 2005年第3期81-84,共4页
RoughSet理论是一种新的处理模糊和不确定信息的数学工具。近20年来,RoughSet理论由于在知识发现等领域的成功应用而受到广泛关注,并得到飞速发展,已成为数据挖掘中的一个很重要的方法。作者讨论了RoughSet理论在数据挖掘过程中的应用,... RoughSet理论是一种新的处理模糊和不确定信息的数学工具。近20年来,RoughSet理论由于在知识发现等领域的成功应用而受到广泛关注,并得到飞速发展,已成为数据挖掘中的一个很重要的方法。作者讨论了RoughSet理论在数据挖掘过程中的应用,并对RoughSet理论在数据挖掘应用中存在的问题和挑战提出了自己的见解。 展开更多
关键词 rough set理论 数据挖掘 知识发现
下载PDF
基于Rough Set的一种决策树的确定算法 被引量:5
14
作者 朱红 《电脑与信息技术》 2002年第4期1-4,共4页
决策树是一种有效用于分类的数据采掘方法 ,通常是通过信息熵的计算去选择分枝属性 ,计算量大而复杂。文章利用粗集理论中相对正域的概念 ,找到另一种信息熵的等效表示方法 ,只要通过简单的集合运算 ,便可对协调和非协调决策表得到相应... 决策树是一种有效用于分类的数据采掘方法 ,通常是通过信息熵的计算去选择分枝属性 ,计算量大而复杂。文章利用粗集理论中相对正域的概念 ,找到另一种信息熵的等效表示方法 ,只要通过简单的集合运算 ,便可对协调和非协调决策表得到相应的确定和非确定性决策树 。 展开更多
关键词 rough set 决策树 确定算法 粗糙集 知识发现 知识推理 智能决策支持系统
下载PDF
基于Rough Set的核值表确定的一种方法 被引量:1
15
作者 朱红 《计算技术与自动化》 2002年第3期9-13,共5页
属性及属性值的约简是 Rough Set理论的核心内容之一 ,找到关键属性和属性值能使决策表有效地进行简化。本文利用 Rough Set理论中关于相对正域的概念 ,给出了一种求最少属性及最小属性值 (即核值表 )的算法 ,并通过理论和实践证明了其... 属性及属性值的约简是 Rough Set理论的核心内容之一 ,找到关键属性和属性值能使决策表有效地进行简化。本文利用 Rough Set理论中关于相对正域的概念 ,给出了一种求最少属性及最小属性值 (即核值表 )的算法 ,并通过理论和实践证明了其正确性。 展开更多
关键词 核值表 数据采掘 知识发现 粗集理论 属性 属性质
下载PDF
基于Rough Set的最小决策算法的研究
16
作者 朱红 《计算机应用》 CSCD 北大核心 2002年第9期19-21,共3页
在决策表中 ,每一行对应了一条决策规则 ,但并非所有的条件属性对该决策都起作用 ,所以要进行决策规则的简化 ,简化后的规则集中仍可能会含有可以去掉而又不影响决策制定过程的冗余规则 ,找到最小规则集 ,能去掉所有的冗余信息 ,达到最... 在决策表中 ,每一行对应了一条决策规则 ,但并非所有的条件属性对该决策都起作用 ,所以要进行决策规则的简化 ,简化后的规则集中仍可能会含有可以去掉而又不影响决策制定过程的冗余规则 ,找到最小规则集 ,能去掉所有的冗余信息 ,达到最简化目的 ,因而最小决策算法的研究很有意义。文中提出一种算法 ,可在不求得核值表的情况下 ,直接找到各规则的最小前提条件属性集 ,获得最小决策算法。 展开更多
关键词 roughset 最小决策算法 粗糙集 分类规则 知识发现
下载PDF
一种基于Rough sets生成决策树的算法改进
17
作者 王志强 王萌 操海燕 《科技情报开发与经济》 2007年第14期226-228,共3页
介绍了决策树算法的含义和构筑方法,对基于加权平均粗糙度构造决策树算法进行改进,通过实例说明了改进算法的优势。
关键词 粗糙集 决策树 C4.5算法 加权平均粗糙度
下载PDF
基于Rough Set的最简决策表及最简规则确定的一种算法
18
作者 朱红 《电脑与信息技术》 2001年第2期6-8,13,共4页
决策表在决策应用中起着重要作用 ,它指当满足某些条件时 ,决策 (行为 )应如何进行 ,但表中往往存在许多冗余信息 ,需要找到并去除它们。本文利用 Rough Set理论中关于核的概念 ,给出了一种求最少属性及最少属性值 (即核值表 )的算法 ,... 决策表在决策应用中起着重要作用 ,它指当满足某些条件时 ,决策 (行为 )应如何进行 ,但表中往往存在许多冗余信息 ,需要找到并去除它们。本文利用 Rough Set理论中关于核的概念 ,给出了一种求最少属性及最少属性值 (即核值表 )的算法 ,从而得到最简决策表 。 展开更多
关键词 数据采掘 分类规则 知识发现 粗集理论 决策表 算法
下载PDF
Rough Set理论在数据挖掘中的研究与应用
19
作者 陈勤富 米根锁 何江燕 《光盘技术》 2008年第9期18-19,共2页
Rough Set理论是一种新的处理模糊和不确定信息的数学工具。近20年来,Rough Set理论由于在知识发现等领域的成功应用而受到广泛关注,并得到飞速发展,已成为数据挖掘中的一个很重要的方法。本文讨论了Rough Set理论在数据挖掘过程中的应... Rough Set理论是一种新的处理模糊和不确定信息的数学工具。近20年来,Rough Set理论由于在知识发现等领域的成功应用而受到广泛关注,并得到飞速发展,已成为数据挖掘中的一个很重要的方法。本文讨论了Rough Set理论在数据挖掘过程中的应用,并对Rough Set理论在数据挖掘应用中存在的问题和挑战提出了自己的见解。 展开更多
关键词 rough set理论 数据挖掘 知识发现
下载PDF
Extract Rules by Using Rough Set and Knowledge-Based NN 被引量:1
20
作者 王士同 E.Scott 《Journal of Computer Science & Technology》 SCIE EI CSCD 1998年第3期279-284,共6页
In this paper, rough set theory is used to extract roughly-correct inference rules from information systems. Based on this idea, the learning algorithm ERCR is presented. In order to refine the learned roughly-correct... In this paper, rough set theory is used to extract roughly-correct inference rules from information systems. Based on this idea, the learning algorithm ERCR is presented. In order to refine the learned roughly-correct inference rules, the knowledge-based neural network is used. The method presented here sufficiently combines the advanages of rough set theory and neural network. 展开更多
关键词 rough set theory knowledge-based NN (neural network) knowledge discovery machine learning
原文传递
上一页 1 2 28 下一页 到第
使用帮助 返回顶部