We consider the boundedness of the rough singular integral operator T_(?,ψ,h) along a surface of revolution on the Triebel-Lizorkin space F^α_( p,q)(R^n) for Ω ∈ H^1((S^n-1)) and Ω ∈ Llog^+L(S^n-1)...We consider the boundedness of the rough singular integral operator T_(?,ψ,h) along a surface of revolution on the Triebel-Lizorkin space F^α_( p,q)(R^n) for Ω ∈ H^1((S^n-1)) and Ω ∈ Llog^+L(S^n-1) ∪_1展开更多
In this paper, the author studies a class of non-standard commutators with higher order remainders for oscillatory singular integral operators with phases more general than polynomials. For 1 〈 p 〈 ∞, the L^p-bound...In this paper, the author studies a class of non-standard commutators with higher order remainders for oscillatory singular integral operators with phases more general than polynomials. For 1 〈 p 〈 ∞, the L^p-boundedness of such operators are obtained provided that their kernels belong to the spaces L^q(s^n-1) for some q 〉 1.展开更多
Here we consider the following strongly singular integral TΩ,γ,α,βf(x,t)=∫R^ne^i|y|^-βΩ(y/|y|)/|y|^n+af(x-y,t-γ(|y|))dy, where Ω∈L^p(S^n-1),p〉1,n〉1,α〉0 and γis convex on (0,∞).We p...Here we consider the following strongly singular integral TΩ,γ,α,βf(x,t)=∫R^ne^i|y|^-βΩ(y/|y|)/|y|^n+af(x-y,t-γ(|y|))dy, where Ω∈L^p(S^n-1),p〉1,n〉1,α〉0 and γis convex on (0,∞).We prove that there exists A(p,n) 〉 0 such that if β 〉 A(p,n) (1 +α), then TΩ,γ,α,β is bounded from L^2 (R^n+1) to itself and the constant is independent of γ Furthermore,when Ω∈ C^∞ (S^n-1 ), we will show that TΩ,γ,α,β is bounded from L^2 (R^n+l) to itself only if β〉 2α and the constant is independent of γ.展开更多
基金supported by National Natural Science Foundation of China (Grant Nos. 11371057, 11471033 and 11571160)Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20130003110003)+2 种基金the Fundamental Research Funds for the Central Universities (Grant No. 2014KJJCA10)Grant-in-Aid for Scientific Research (C) (Grant No. 23540228)Japan Society for the Promotion of Science
文摘We consider the boundedness of the rough singular integral operator T_(?,ψ,h) along a surface of revolution on the Triebel-Lizorkin space F^α_( p,q)(R^n) for Ω ∈ H^1((S^n-1)) and Ω ∈ Llog^+L(S^n-1) ∪_1
基金Supported by the National Natural Science Foundation of China (Grant No. 10771054)the Natural Science Foundation of Fujian Province of China (Grant No. Z0511004)
文摘In this paper, the author studies a class of non-standard commutators with higher order remainders for oscillatory singular integral operators with phases more general than polynomials. For 1 〈 p 〈 ∞, the L^p-boundedness of such operators are obtained provided that their kernels belong to the spaces L^q(s^n-1) for some q 〉 1.
基金supported by NSFC(Nos.11471288,11371136 and 11671363)NSFZJ(LY14A010015)China Scholarship Council
文摘Here we consider the following strongly singular integral TΩ,γ,α,βf(x,t)=∫R^ne^i|y|^-βΩ(y/|y|)/|y|^n+af(x-y,t-γ(|y|))dy, where Ω∈L^p(S^n-1),p〉1,n〉1,α〉0 and γis convex on (0,∞).We prove that there exists A(p,n) 〉 0 such that if β 〉 A(p,n) (1 +α), then TΩ,γ,α,β is bounded from L^2 (R^n+1) to itself and the constant is independent of γ Furthermore,when Ω∈ C^∞ (S^n-1 ), we will show that TΩ,γ,α,β is bounded from L^2 (R^n+l) to itself only if β〉 2α and the constant is independent of γ.