In this work, we consider different numerical methods for the approximation of definite integrals. The three basic methods used here are the Midpoint, the Trapezoidal, and Simpson’s rules. We trace the behavior of th...In this work, we consider different numerical methods for the approximation of definite integrals. The three basic methods used here are the Midpoint, the Trapezoidal, and Simpson’s rules. We trace the behavior of the error when we refine the mesh and show that Richardson’s extrapolation improves the rate of convergence of the basic methods when the integrands are sufficiently differentiable many times. However, Richardson’s extrapolation does not work when we approximate improper integrals or even proper integrals from functions without smooth derivatives. In order to save computational resources, we construct an adaptive recursive procedure. We also show that there is a lower limit to the error during computations with floating point arithmetic.展开更多
This paper proves that the weighting method via modified Gram-Schmidt(MGS) for solving the equality constrained least squares problem in the limit is equivalent to the direct elimination method via MGS(MGS-eliminat...This paper proves that the weighting method via modified Gram-Schmidt(MGS) for solving the equality constrained least squares problem in the limit is equivalent to the direct elimination method via MGS(MGS-elimination method). By virtue of this equivalence, the backward and forward roundoff error analysis of the MGS-elimination method is proved. Numerical experiments are provided to verify the results.展开更多
文摘In this work, we consider different numerical methods for the approximation of definite integrals. The three basic methods used here are the Midpoint, the Trapezoidal, and Simpson’s rules. We trace the behavior of the error when we refine the mesh and show that Richardson’s extrapolation improves the rate of convergence of the basic methods when the integrands are sufficiently differentiable many times. However, Richardson’s extrapolation does not work when we approximate improper integrals or even proper integrals from functions without smooth derivatives. In order to save computational resources, we construct an adaptive recursive procedure. We also show that there is a lower limit to the error during computations with floating point arithmetic.
基金supported by the Shanghai Leading Academic Discipline Project (Grant No.J50101)
文摘This paper proves that the weighting method via modified Gram-Schmidt(MGS) for solving the equality constrained least squares problem in the limit is equivalent to the direct elimination method via MGS(MGS-elimination method). By virtue of this equivalence, the backward and forward roundoff error analysis of the MGS-elimination method is proved. Numerical experiments are provided to verify the results.