Wireless Mesh Network has drawn much attention due to wide area service coverage with low system cost and being easy to install.However,WMN suffers from high bit error rate,which provides different link capacity among...Wireless Mesh Network has drawn much attention due to wide area service coverage with low system cost and being easy to install.However,WMN suffers from high bit error rate,which provides different link capacity among wireless mesh routers.The conventional routing metrics select the path based on link quality.The link with the best quality is preferred as the data transmission path,and thus all nodes likely select the same link,which leads to network performance degradation.This paper proposes a routing metric that considers the available bandwidth and the number of nodes suffering congestion in the path.It is confirmed that the proposed method provides higher network performance of reduced delay,reduced packet loss and increased throughput than conventional routing metrics.展开更多
In WSNs’ applications, not only the reliable end-to-end communications are must be ensured, but also the reduction of energy consumption and the entire network’s lifetim e should be optimized. All of the above have ...In WSNs’ applications, not only the reliable end-to-end communications are must be ensured, but also the reduction of energy consumption and the entire network’s lifetim e should be optimized. All of the above have become to be an important way to evaluate the performance of routing protocols. In this paper, an op-timization model for WSNs’ lifetime is firstly advanced. Secondly, the shortage of ETX based routing metric is solved with the help of the optimization model. Thirdly, an energy balanced routing metric is advanced which is called EBRM in this paper. The result of simulation in NS-2 shows that, the EBRM metric can not only prolong the network’s lifetime, but also can ensure the reliable end-to-end communication.展开更多
Advance development of wireless technologies and micro-sensor systems have enabled Wireless Sensor Network (WSN) to emerge as a leading solution in many crucial sensor-based applications. WSN deploys numerous resource...Advance development of wireless technologies and micro-sensor systems have enabled Wireless Sensor Network (WSN) to emerge as a leading solution in many crucial sensor-based applications. WSN deploys numerous resource-constrained sensor nodes which have limited power supply, memory and computation capability in a harsh environment. Inefficient routing strategy results in degraded network performance in terms of reliability, latency and energy efficiency. In this paper, a cross-layer design, Contention-based MAC and Routing protocol is proposed, termed Contention/SNIR-Based Forwarding (CSBF) protocol. CSBF utilizes the geographical information of sensor nodes to effectively guide the routing direction towards destination node, thereby enhancing reliability. Furthermore, Signal-to-Noise-plus-Interference Ratio (SNIR) metric is used as a routing parameter to guarantee high quality link for data transmission. A Contention-Winner Relay scheme is utilized to reduce the delays caused by the contention procedure. Energy efficiency is also improved by introducing sleep mode technique in CSBF. The simulation work is carried out via OMNeT++ network simulator. The performance of CSBF is compared with other existing routing protocols such as AODV and DSDV in terms of packet delivery ratio (PDR), average end-to-end (ETE) delay and energy consumption per packet. Simulation results highlight that CSBF outperforms AODV and DSDV protocols in respect of PDR and energy efficiency. CSBF also has the most consistent overall network performance.展开更多
Internet of Things(IoT)is a recent paradigm to improve human lifestyle.Nowadays,number devices are connected to the Internet drastically.Thus,the people can control and monitor the physical things in real-time without...Internet of Things(IoT)is a recent paradigm to improve human lifestyle.Nowadays,number devices are connected to the Internet drastically.Thus,the people can control and monitor the physical things in real-time without delay.The IoT plays a vital role in all kind of fields in our world such as agriculture,livestock,transport,and healthcare,grid system,connected home,elderly people carrying system,cypher physical system,retail,and intelligent systems.In IoT energy conservation is a challenging task,as the devices are made up of low-cost and low-power sensing devices and local processing.IoT networks have significant challenges in two areas:network lifespan and energy usage.Therefore,the clustering is a right choice to prolong the energy in the network.In LEACH clustering protocol,sometimes the same node acts as CH again and again probabilistically.To overcome these issues,this paper proposes the Energy-Aware Cluster-based Routing(EACRLEACH)protocol in WSN based IoT.The Cluster Head(CH)selection is a crucial task in clustering protocol inWSN based IoT.In EACR-LEACH,the CH is selected by using the routing metrics,Residual Energy(RER),Number of Neighbors(NoN),Distance between Sensor Node and Sink(Distance)and Number of Time Node Act as CH(NTNACH).An extensive simulation is conducted on MATLAB 2019a.The accomplishment of EACR-LEACH is compared to LEACH and SE-LEACH.The proposed EACR-LEACH protocol extends the network’s lifetime by 4%-8%and boosts throughput by 16%–24%.展开更多
Network coding has been considered as one of the effective strategies that improve the throughput of multi- hop wireless networks. In order to effectively apply network coding techniques to the real multi-hop wireless...Network coding has been considered as one of the effective strategies that improve the throughput of multi- hop wireless networks. In order to effectively apply network coding techniques to the real multi-hop wireless networks, a practical network coding aware routing protocol is proposed in this paper, for unicast sessions in multi- hop wireless networks. The protocol is based on a novel routing metric design that captures the characteristics of network coding and unicast sessions. To ensure the novel routing mettle can operate with practical and widely available path calculation algorithms, a unique mapping process is used to map a real wireless network to a virtual network. The mapping process ensures that the paths with the biggest coding opportunities will be selected by commonly used path calculation algorithms. Simulation results show that the proposed routing protocol is effective to improve the network throughput.展开更多
In order to help reactive ad hoc routing protocols select better-performance routes, a novel metric named geographic route length (GRL) is proposed. The relationship between GRL metric and routing performance is ana...In order to help reactive ad hoc routing protocols select better-performance routes, a novel metric named geographic route length (GRL) is proposed. The relationship between GRL metric and routing performance is analyzed in detail. Combined with hop metric, GRL is applied into the original ad hoe on-demand distance vector (AODV) to demonstrate its effectiveness. Simulation experiments have shown that GRL can effectively reduce packet delay and route discovery frequency, thus can improve reactive ad hoc routing performance.展开更多
A Mobile Ad hoc NETwork (MANET) is a self-organizing, temporary, infrastructure-free, multi-hop, dynamic topology wireless network that contains collection of cooperative autonomous freely roaming mobile nodes. The no...A Mobile Ad hoc NETwork (MANET) is a self-organizing, temporary, infrastructure-free, multi-hop, dynamic topology wireless network that contains collection of cooperative autonomous freely roaming mobile nodes. The nodes communicate with each other by wireless radio links with no human intervention. Each mobile node functions as a specialized router to forward information to other mobile nodes. In order to provide efficient end-to-end communication with the network of nodes, a routing protocol is used to discover the optimal routes between the nodes. The routing protocols meant for wired networks can not be used for mobile ad hoc networks because of the mobility of nodes. Routing in ad hoc networks is nontrivial due to highly dynamic nature of the nodes. Various routing protocols have been proposed and widely evaluated for efficient routing of packets. This research paper presents an overview on classification of wide range of routing protocols for mobile ad hoc wireless networks proposed in the literature and shows the performance evaluation of the routing protocols: DSDV, AODV, FSR, LAR, OLSR, STAR and ZRP using the network simulator QualNet 4.0 to determine which protocols may perform best in large networks. To judge the merit of a routing protocol, one needs performance metrics (throughput, end-to-end delay, jitter, packet delivery ratio, routing overhead) with which to measure its suitability and performance. Our simulation experiments show that the LAR protocol achieve relatively good performance compared to other routing protocols.展开更多
The routing protocol for low-power and lossy networks(RPL),standardized by Internet Engineering Task Force(IETF),is mainly designed to use for Low-power and Lossy Networks(LLNs).To solve the problems of several import...The routing protocol for low-power and lossy networks(RPL),standardized by Internet Engineering Task Force(IETF),is mainly designed to use for Low-power and Lossy Networks(LLNs).To solve the problems of several important routing metrics are not evaluated,the optimal path may contain long single hop links,lack of scientific multi-routing metrics evaluation method and mechanism to balance the parent child number(especially the parent with one hop away from root),this paper proposes an improved RPL algorithm for LLN(I-RPL).First of all,we propose the evaluated routing metrics:child number of parent,candidate parent number,hop count,ETX and energy consumption index.Meanwhile,we improve the path ETX calculation method to avoid selecting optimal path containing long single hop links.Then we design a novel lexical method to synthetically evaluate candidate parents.Meanwhile,based on the evaluation results of candidate parents,we design a novel objective function and a new calculation node rank method which can also be used for selecting the optimal path.Finally,evaluation results show that I-RPL outperforms ETXOF and several other improvements in terms of packet delivery ratio,latency,etc.展开更多
节点移动是导致移动自组织网络性能下降、限制网络规模扩展的关键因素之一.寻找稳定路径是减小节点移动影响的有效手段.现有的稳定路径寻找方法存在以下局限:需要节点具有地理位置定位的硬件功能支持,或需要信号强度上传的交叉层功能支...节点移动是导致移动自组织网络性能下降、限制网络规模扩展的关键因素之一.寻找稳定路径是减小节点移动影响的有效手段.现有的稳定路径寻找方法存在以下局限:需要节点具有地理位置定位的硬件功能支持,或需要信号强度上传的交叉层功能支持.为此,提出了不需要特殊硬件支持、可独立于底层协议工作、基于邻居变化率的稳定路径选择方法.以AODV(Ad hoc on-demand distance vector)按需路由协议为基础,扩展为NCR-AODV(Neighbor change ratio Ad hoc on-demand distance vector)路由协议.新协议选择转发跳数少并且局部拓扑变化小的路径进行数据转发.仿真结果表明,NCR-AODV协议减小了长路径中断概率,提高了网络性能.展开更多
基金supported by the ubiquitous Computing and Network(UCN)Projectthe Ministry of Knowledge and Econ-omy(MKE)Knowledge and Economy Frontier R&DProgramin Korea as a result of UCN′s subproject10C2-C1-20Ssupported by the MKE(The Ministry of Knowledge Economy),Korea,under the Convergence-ITRC(Convergence Infor mation Technology Research Center)support program(NIPA-2011-C6150-1101-0004)
文摘Wireless Mesh Network has drawn much attention due to wide area service coverage with low system cost and being easy to install.However,WMN suffers from high bit error rate,which provides different link capacity among wireless mesh routers.The conventional routing metrics select the path based on link quality.The link with the best quality is preferred as the data transmission path,and thus all nodes likely select the same link,which leads to network performance degradation.This paper proposes a routing metric that considers the available bandwidth and the number of nodes suffering congestion in the path.It is confirmed that the proposed method provides higher network performance of reduced delay,reduced packet loss and increased throughput than conventional routing metrics.
文摘In WSNs’ applications, not only the reliable end-to-end communications are must be ensured, but also the reduction of energy consumption and the entire network’s lifetim e should be optimized. All of the above have become to be an important way to evaluate the performance of routing protocols. In this paper, an op-timization model for WSNs’ lifetime is firstly advanced. Secondly, the shortage of ETX based routing metric is solved with the help of the optimization model. Thirdly, an energy balanced routing metric is advanced which is called EBRM in this paper. The result of simulation in NS-2 shows that, the EBRM metric can not only prolong the network’s lifetime, but also can ensure the reliable end-to-end communication.
文摘Advance development of wireless technologies and micro-sensor systems have enabled Wireless Sensor Network (WSN) to emerge as a leading solution in many crucial sensor-based applications. WSN deploys numerous resource-constrained sensor nodes which have limited power supply, memory and computation capability in a harsh environment. Inefficient routing strategy results in degraded network performance in terms of reliability, latency and energy efficiency. In this paper, a cross-layer design, Contention-based MAC and Routing protocol is proposed, termed Contention/SNIR-Based Forwarding (CSBF) protocol. CSBF utilizes the geographical information of sensor nodes to effectively guide the routing direction towards destination node, thereby enhancing reliability. Furthermore, Signal-to-Noise-plus-Interference Ratio (SNIR) metric is used as a routing parameter to guarantee high quality link for data transmission. A Contention-Winner Relay scheme is utilized to reduce the delays caused by the contention procedure. Energy efficiency is also improved by introducing sleep mode technique in CSBF. The simulation work is carried out via OMNeT++ network simulator. The performance of CSBF is compared with other existing routing protocols such as AODV and DSDV in terms of packet delivery ratio (PDR), average end-to-end (ETE) delay and energy consumption per packet. Simulation results highlight that CSBF outperforms AODV and DSDV protocols in respect of PDR and energy efficiency. CSBF also has the most consistent overall network performance.
基金We deeply acknowledge Taif University for supporting this study through Taif University Researchers Supporting Project Number(TURSP-2020/313),Taif University,Taif,Saudi Arabia.
文摘Internet of Things(IoT)is a recent paradigm to improve human lifestyle.Nowadays,number devices are connected to the Internet drastically.Thus,the people can control and monitor the physical things in real-time without delay.The IoT plays a vital role in all kind of fields in our world such as agriculture,livestock,transport,and healthcare,grid system,connected home,elderly people carrying system,cypher physical system,retail,and intelligent systems.In IoT energy conservation is a challenging task,as the devices are made up of low-cost and low-power sensing devices and local processing.IoT networks have significant challenges in two areas:network lifespan and energy usage.Therefore,the clustering is a right choice to prolong the energy in the network.In LEACH clustering protocol,sometimes the same node acts as CH again and again probabilistically.To overcome these issues,this paper proposes the Energy-Aware Cluster-based Routing(EACRLEACH)protocol in WSN based IoT.The Cluster Head(CH)selection is a crucial task in clustering protocol inWSN based IoT.In EACR-LEACH,the CH is selected by using the routing metrics,Residual Energy(RER),Number of Neighbors(NoN),Distance between Sensor Node and Sink(Distance)and Number of Time Node Act as CH(NTNACH).An extensive simulation is conducted on MATLAB 2019a.The accomplishment of EACR-LEACH is compared to LEACH and SE-LEACH.The proposed EACR-LEACH protocol extends the network’s lifetime by 4%-8%and boosts throughput by 16%–24%.
基金Supported by the National Natural Science Foundation of China (No. 60903156), and the National Science and Technology Major Project of the Ministry of Science and Technology of China (No. 2010ZX03004-001-02).
文摘Network coding has been considered as one of the effective strategies that improve the throughput of multi- hop wireless networks. In order to effectively apply network coding techniques to the real multi-hop wireless networks, a practical network coding aware routing protocol is proposed in this paper, for unicast sessions in multi- hop wireless networks. The protocol is based on a novel routing metric design that captures the characteristics of network coding and unicast sessions. To ensure the novel routing mettle can operate with practical and widely available path calculation algorithms, a unique mapping process is used to map a real wireless network to a virtual network. The mapping process ensures that the paths with the biggest coding opportunities will be selected by commonly used path calculation algorithms. Simulation results show that the proposed routing protocol is effective to improve the network throughput.
文摘In order to help reactive ad hoc routing protocols select better-performance routes, a novel metric named geographic route length (GRL) is proposed. The relationship between GRL metric and routing performance is analyzed in detail. Combined with hop metric, GRL is applied into the original ad hoe on-demand distance vector (AODV) to demonstrate its effectiveness. Simulation experiments have shown that GRL can effectively reduce packet delay and route discovery frequency, thus can improve reactive ad hoc routing performance.
文摘A Mobile Ad hoc NETwork (MANET) is a self-organizing, temporary, infrastructure-free, multi-hop, dynamic topology wireless network that contains collection of cooperative autonomous freely roaming mobile nodes. The nodes communicate with each other by wireless radio links with no human intervention. Each mobile node functions as a specialized router to forward information to other mobile nodes. In order to provide efficient end-to-end communication with the network of nodes, a routing protocol is used to discover the optimal routes between the nodes. The routing protocols meant for wired networks can not be used for mobile ad hoc networks because of the mobility of nodes. Routing in ad hoc networks is nontrivial due to highly dynamic nature of the nodes. Various routing protocols have been proposed and widely evaluated for efficient routing of packets. This research paper presents an overview on classification of wide range of routing protocols for mobile ad hoc wireless networks proposed in the literature and shows the performance evaluation of the routing protocols: DSDV, AODV, FSR, LAR, OLSR, STAR and ZRP using the network simulator QualNet 4.0 to determine which protocols may perform best in large networks. To judge the merit of a routing protocol, one needs performance metrics (throughput, end-to-end delay, jitter, packet delivery ratio, routing overhead) with which to measure its suitability and performance. Our simulation experiments show that the LAR protocol achieve relatively good performance compared to other routing protocols.
基金supported by Doctoral Research Project of Tianjin Normal University 52XB2101。
文摘The routing protocol for low-power and lossy networks(RPL),standardized by Internet Engineering Task Force(IETF),is mainly designed to use for Low-power and Lossy Networks(LLNs).To solve the problems of several important routing metrics are not evaluated,the optimal path may contain long single hop links,lack of scientific multi-routing metrics evaluation method and mechanism to balance the parent child number(especially the parent with one hop away from root),this paper proposes an improved RPL algorithm for LLN(I-RPL).First of all,we propose the evaluated routing metrics:child number of parent,candidate parent number,hop count,ETX and energy consumption index.Meanwhile,we improve the path ETX calculation method to avoid selecting optimal path containing long single hop links.Then we design a novel lexical method to synthetically evaluate candidate parents.Meanwhile,based on the evaluation results of candidate parents,we design a novel objective function and a new calculation node rank method which can also be used for selecting the optimal path.Finally,evaluation results show that I-RPL outperforms ETXOF and several other improvements in terms of packet delivery ratio,latency,etc.
基金Supported by the National Natural Science Foundation of China under Grant No.60403031(国家自然科学基金)the National HighTech Research and Development Plan of China under Grant No.2005AA121560(国家高技术研究发展计划(863))+3 种基金the Fundamental Research Project of the Institute of Computing Technology the Chinese Academy of Sciences (中国科学院计算技术研究所基础研究项目)the Youth Innovation Foundation of the Institute of Computing Technology the Chinese Academy of Sciences(中国科学院计算技术研究所青年创新基金)
文摘节点移动是导致移动自组织网络性能下降、限制网络规模扩展的关键因素之一.寻找稳定路径是减小节点移动影响的有效手段.现有的稳定路径寻找方法存在以下局限:需要节点具有地理位置定位的硬件功能支持,或需要信号强度上传的交叉层功能支持.为此,提出了不需要特殊硬件支持、可独立于底层协议工作、基于邻居变化率的稳定路径选择方法.以AODV(Ad hoc on-demand distance vector)按需路由协议为基础,扩展为NCR-AODV(Neighbor change ratio Ad hoc on-demand distance vector)路由协议.新协议选择转发跳数少并且局部拓扑变化小的路径进行数据转发.仿真结果表明,NCR-AODV协议减小了长路径中断概率,提高了网络性能.