The huge increase in the communication network rate has made the application fields and scenarios for vehicular ad hoc networks more abundant and diversified and proposed more requirements for the efficiency and quali...The huge increase in the communication network rate has made the application fields and scenarios for vehicular ad hoc networks more abundant and diversified and proposed more requirements for the efficiency and quality of data transmission.To improve the limited communication distance and poor communication quality of the Internet of Vehicles(IoV),an optimal intelligent routing algorithm is proposed in this paper.Combined multiweight decision algorithm with the greedy perimeter stateless routing protocol,designed and evaluated standardized function for link stability.Linear additive weighting is used to optimize link stability and distance to improve the packet delivery rate of the IoV.The blockchain system is used as the storage structure for relay data,and the smart contract incentive algorithm based on machine learning is used to encourage relay vehicles to provide more communication bandwidth for data packet transmission.The proposed scheme is simulated and analyzed under different scenarios and different parameters.The experimental results demonstrate that the proposed scheme can effectively reduce the packet loss rate and improve system performance.展开更多
A layered algorithm by bidirectional searching is proposed in this paper to solve the problem that it is difficult and time consuming to reach an optimal solution of the route search with multiple parameter restrictio...A layered algorithm by bidirectional searching is proposed in this paper to solve the problem that it is difficult and time consuming to reach an optimal solution of the route search with multiple parameter restrictions for good quality of service. Firstly, a set of reachable paths to each intermediate node from the source node and the sink node based on adjacent matrix transformation are calculated respectively. Then a temporal optimal path is selected by adopting the proposed heuristic method according to a non-linear cost function. When the total number of the accumulated nodes by bidirectional searching reaches n-2, the paths from two directions to an intermediate node should be combined and several paths via different nodes from the source node to the sink node can be obtained, then an optimal path in the whole set of paths can be taken as the output route. Some simulation examples are included to show the effectiveness and efficiency of the proposed method. In addition, the proposed algorithm can be implemented with parallel computation and thus, the new algorithm has better performance in time complexity than other algorithms. Mathematical analysis indicates that the maximum complexity in time, based on parallel computation, is the same as the polynomial complexity of O(kn2-3kn+k), and some simulation results are shown to support this analysis.展开更多
The improvement of the quality and efficiency of vehicle wireless network data transmission is always a key concern in the Internet of Vehicles(IoV).Routing transmission solved the limitation of transmission distance ...The improvement of the quality and efficiency of vehicle wireless network data transmission is always a key concern in the Internet of Vehicles(IoV).Routing transmission solved the limitation of transmission distance to a certain extent.Traditional routing algorithm cannot adapt to complex traffic environment,resulting in low transmission efficiency.In order to improve the transmission success rate and quality of vehicle network routing transmission,make the routing algorithm more suitable for complex traffic environment,and reduce transmission power consumption to improve energy efficiency,a comprehensive optimized routing transmission algorithm is proposed.Based on the routing transmission algorithm,an optimization algorithmbased on road condition,vehicle status and network performance is proposed to improve the success rate of routing transmission in the IoV.Relative distance difference and density are used as decision-making indicators to measure Road Side Unit(RSU)assisted transmission.And the Ambient backscatter communication(AmBC)technology and energy collection are used to reduce the energy consumption of routing relay transmission.An energy collection optimization algorithm is proposed to optimize the energy efficiency of AmBC and improve the energy efficiency of transmission.Simulation results show that the proposed routing optimization algorithm can effectively improve the success rate of packet transmission in vehicular ad hoc networks(VANETs),and theAmBC optimization algorithmcan effectively reduce energy consumption in the transmission process.The proposed optimization algorithm achieves comprehensive optimization of routing transmission performance and energy efficiency.展开更多
Quantum transmission experiments have shown that the success-ful transmission rate of entangled quanta in optical fibers decreases expo-nentially.Although current quantum networks deploy quantum relays to establish lo...Quantum transmission experiments have shown that the success-ful transmission rate of entangled quanta in optical fibers decreases expo-nentially.Although current quantum networks deploy quantum relays to establish long-distance connections,the increase in transmission distance and entanglement switching costs still need to be considered when selecting the next hop.However,most of the existing quantum network models prefer to consider the parameters of the physical layer,which ignore the influence factors of the network layer.In this paper,we propose a meshy quantum network model based on quantum teleportation,which considers both net-work layer and physical layer parameters.The proposed model can reflect the realistic transmission characteristics and morphological characteristics of the quantum relay network.Then,we study the network throughput of different routing algorithms with the same given parameters when multiple source-destination pairs are interconnected simultaneously.To solve the chal-lenges of routing competition caused by the simultaneous transmission,we present greedy memory-occupied algorithm Q-GMOA and random memory-occupied algorithm Q-RMOA.The proposed meshy quantum network model and the memory-occupied routing algorithms can improve the utilization rate of resources and the transmission performance of the quantum network.And the evaluation results indicate that the proposed methods embrace a higher transmission rate than the previous methods with repeater occupation.展开更多
The conception of the normalized reliability index weighted by capacity is introduced, which combing the communication capacity, the reliability probability of exchange nodes and the reliability probability of the tra...The conception of the normalized reliability index weighted by capacity is introduced, which combing the communication capacity, the reliability probability of exchange nodes and the reliability probability of the transmission links, in order to estimate the reliability performance of communication network comprehensively and objectively. To realize the full algebraic calculation, the key problem should be resolved, which is to find an algorithm to calculate all the routes between nodes of a network. A kind of logic algebraic algorithm of network routes is studied and based on this algorithm, the full algebraic algorithm of normalized reliability index weighted by capacity is studied. For this algorithm, it is easy to design program and the calculation of reliability index is finished, which is the foundation of the comprehensive and objective estimation of communication networks. The calculation procedure of the algorithm is introduced through typical examples and the results verify the algorithm.展开更多
Quantum key distribution(QKD)is a technology that can resist the threat of quantum computers to existing conventional cryptographic protocols.However,due to the stringent requirements of the quantum key generation env...Quantum key distribution(QKD)is a technology that can resist the threat of quantum computers to existing conventional cryptographic protocols.However,due to the stringent requirements of the quantum key generation environment,the generated quantum keys are considered valuable,and the slow key generation rate conflicts with the high-speed data transmission in traditional optical networks.In this paper,for the QKD network with a trusted relay,which is mainly based on point-to-point quantum keys and has complex changes in network resources,we aim to allocate resources reasonably for data packet distribution.Firstly,we formulate a linear programming constraint model for the key resource allocation(KRA)problem based on the time-slot scheduling.Secondly,we propose a new scheduling scheme based on the graded key security requirements(GKSR)and a new micro-log key storage algorithm for effective storage and management of key resources.Finally,we propose a key resource consumption(KRC)routing optimization algorithm to properly allocate time slots,routes,and key resources.Simulation results show that the proposed scheme significantly improves the key distribution success rate and key resource utilization rate,among others.展开更多
[Objective] This study was to design an intelligent greenhouse real-time monitoring system based on the core technology of Internet of Things in order to meet the needs of agricultural informatization and intellectual...[Objective] This study was to design an intelligent greenhouse real-time monitoring system based on the core technology of Internet of Things in order to meet the needs of agricultural informatization and intellectualization. [Method] Based on the application characteristics of Wireless Sensor Network (WSN), the intelligent greenhouse monitoring system was designed. And for the incompleteness strategy of load balancing in the Low-Energy Adaptive Clustering Hierarchy (LEACH), a Real- time Threshold Routing Algorithm (RTRA) was proposed. [Result] The performance of network lifetime and network delay of RTRA were tested in MATLAB and found that, within the same testing environment, RTRA can save nodes energy consumption, prolong network lifetime, and had better real-time performance than LEACH. The al- gorithm satisfies the crops' requirements on real-time and energy efficiency in the greenhouse system. [Conclusion] For the good performance on real-time, the de- signed intelligent greenhouse real-time monitoring system laid the foundation for the research and development of agricultural informatization and intellectualization.展开更多
As an important part of satellite communication network,LEO satellite constellation network is one of the hot research directions.Since the nonuniform distribution of terrestrial services may cause inter-satellite lin...As an important part of satellite communication network,LEO satellite constellation network is one of the hot research directions.Since the nonuniform distribution of terrestrial services may cause inter-satellite link congestion,improving network load balancing performance has become one of the key issues that need to be solved for routing algorithms in LEO network.Therefore,by expanding the range of available paths and combining the congestion avoidance mechanism,a load balancing routing algorithm based on extended link states in LEO constellation network is proposed.Simulation results show that the algorithm achieves a balanced distribution of traffic load,reduces link congestion and packet loss rate,and improves throughput of LEO satellite network.展开更多
There were many contradictory evaluation criteria to select next-hop in the delay-disruption tolerance networks(DTN).To solve this problem,an attribute hierarchical model was proposed,in which the predefined criteria ...There were many contradictory evaluation criteria to select next-hop in the delay-disruption tolerance networks(DTN).To solve this problem,an attribute hierarchical model was proposed,in which the predefined criteria were summarized as static identity attributes,forwarding desire attributes and delivery capability attributes(IDC).Based on this model,a novel multi-attributes congestion aware routing(MACAR) scheme with uncertain information for next-hop selection was presented,by adopting an decision theory to aggregate attributes with belief structure and computing partial ordering relations.The simulation results show that MACAR presents higher successful delivery rate,lower average delay and effectively alleviate congestion.展开更多
Loop free alternate(LFA)is a routing protection scheme that is currently deployed in commercial routers.However,LFA cannot handle all single network component failure scenarios in traditional networks.As Internet serv...Loop free alternate(LFA)is a routing protection scheme that is currently deployed in commercial routers.However,LFA cannot handle all single network component failure scenarios in traditional networks.As Internet service providers have begun to deploy software defined network(SDN)technology,the Internet will be in a hybrid SDN network where traditional and SDN devices coexist for a long time.Therefore,this study aims to deploy the LFA scheme in hybrid SDN network architecture to handle all possible single network component failure scenarios.First,the deployment of LFA scheme in a hybrid SDN network is described as a 0-1 integer linear programming(ILP)problem.Then,two greedy algorithms,namely,greedy algorithm for LFA based on hybrid SDN(GALFAHSDN)and improved greedy algorithm for LFA based on hybrid SDN(IGALFAHSDN),are proposed to solve the proposed problem.Finally,both algorithms are tested in the simulation environment and the real platform.Experiment results show that GALFAHSDN and IGALFAHSDN can cope with all single network component failure scenarios when only a small number of nodes are upgraded to SDN nodes.The path stretch of the two algorithms is less than 1.36.展开更多
In a large-scale wireless sensor network(WSN),densely distributed sensor nodes process a large amount of data.The aggregation of data in a network can consume a great amount of energy.To balance and reduce the energy ...In a large-scale wireless sensor network(WSN),densely distributed sensor nodes process a large amount of data.The aggregation of data in a network can consume a great amount of energy.To balance and reduce the energy consumption of nodes in a WSN and extend the network life,this paper proposes a nonuniform clustering routing algorithm based on the improved K-means algorithm.The algorithm uses a clustering method to form and optimize clusters,and it selects appropriate cluster heads to balance network energy consumption and extend the life cycle of the WSN.To ensure that the cluster head(CH)selection in the network is fair and that the location of the selected CH is not concentrated within a certain range,we chose the appropriate CH competition radius.Simulation results show that,compared with LEACH,LEACH-C,and the DEEC clustering algorithm,this algorithm can effectively balance the energy consumption of the CH and extend the network life.展开更多
A novel reliable routing algorithm in mobile ad hoc networks using fuzzy Petri net with its reasoning mechanism was proposed to increase the reliability during the routing selection. The algorithm allows the structure...A novel reliable routing algorithm in mobile ad hoc networks using fuzzy Petri net with its reasoning mechanism was proposed to increase the reliability during the routing selection. The algorithm allows the structured representation of network topology, which has a fuzzy reasoning mechanism for finding the routing sprouting tree from the source node to the destination node in the mobile ad boc environment. Finally, by comparing the degree of reliability in the routing sprouting tree, the most reliable route can be computed. The algorithm not only offers the local reliability between each neighboring node, but also provides global reliability for the whole selected route. The algorithm can be applied to most existing on-demand routing protocols, and the simulation results show that the routing reliability is increased by more than 80% when applying the proposed algorithm to the ad hoc on demand distance vector routing protocol.展开更多
Opportunistic networks are random networks and do not communicate with each other among respective communication areas.This situation leads to great difficulty in message transfer.This paper proposes a reducing energy...Opportunistic networks are random networks and do not communicate with each other among respective communication areas.This situation leads to great difficulty in message transfer.This paper proposes a reducing energy consumption optimal selection of path transmission(OSPT) routing algorithm in opportunistic networks.This algorithm designs a dynamic random network topology,creates a dynamic link,and realizes an optimized selected path.This algorithm solves a problem that nodes are unable to deliver messages for a long time in opportunistic networks.According to the simulation experiment,OSPT improves deliver ratio,and reduces energy consumption,cache time and transmission delay compared with the Epidemic Algorithm and Spray and Wait Algorithm in opportunistic networks.展开更多
Opportunistic Mobile Social Networks(OMSNs)are kind of Delay Tolerant Networks(DTNs)that leverage characteristics of Mobile Ad Hoc Networks(MANETs)and Social Networks,particularly the social features,to boost performa...Opportunistic Mobile Social Networks(OMSNs)are kind of Delay Tolerant Networks(DTNs)that leverage characteristics of Mobile Ad Hoc Networks(MANETs)and Social Networks,particularly the social features,to boost performance of routing algorithms.Users in OMSNs communicate to share and disseminate data to meet needs for variety of applications.Such networks have attracted tremendous attention lately due to the data transmission requirement from emerging applications such as IoT and smart city initiatives.Devices carried by human is the carrier of message transmission,so the social features of human can be used to improve the ability of data transmission.In this paper,we conduct a comparative survey on routing algorithms in OMSNs.We first analyze routing algorithms based on three social features.Since node selfishness is not really considered previously in aforementioned routing algorithms,but has significant impact on network performance,we treat node selfishness as another social feature,classify and elaborate routing algorithms based on incentive mechanism.To assess the impact of social features on routing algorithms,we conducted simulation for six routing algorithms and analyzed the simulation result.Finally,we conclude the paper with challenges on design of routing in OMSNs and point out some future research directions.展开更多
Dijkstra algorithm is a basic algorithm to analyze the vehicle routing problem (VRP) in the terminal distribution of logistics center. According to the actual client demands of service speed and quality, the conceptio...Dijkstra algorithm is a basic algorithm to analyze the vehicle routing problem (VRP) in the terminal distribution of logistics center. According to the actual client demands of service speed and quality, the conceptions of economical distance of delivery and the best routing algorithm were given on the base of the Dijkstra algorithm with consideration of a coefficient of the road hustle degree. Economical distance of delivery is the shortest physical distance between two customers. It is the value of goods delivery in shortest distance when concerning factors such as the road length, the hustle degree, the driveway quantity, and the type of the road. The improved algorithm is being used in the development and application of a distribution path information system in the terminal distribution of logistics center. The simulation and practical case prove that the algorithm is effective and reasonable.展开更多
A multipath source self repair routing (MSSRR) algorithm for mobile ad hoc networks is proposed. By using multiple paths which can be repaired by themselves to transmit packets alternately, the network's load is b...A multipath source self repair routing (MSSRR) algorithm for mobile ad hoc networks is proposed. By using multiple paths which can be repaired by themselves to transmit packets alternately, the network's load is balanced, the link state in the network can be checked in time, the number of the times the route discovery mechanism starts is decreased. If only one route which will be broken can be used to transmit the packets, the route discovery mechanism is restarted.The algorithm is implemented on the basis of dynamic source routing (DSR). The effect of MSSRR on lifetime of the access from the source to the destination and the overhead is discussed. Compared with the performance of DSR,it can be seen that the algorithm can improve the performance of the network obviously and the overhead almost does not increase if the average hop count is larger.展开更多
Because of different system capacities of base station (BS) or access point (AP) and ununiformity of traffic distribution in different cells, quantities of new call users may be blocked in overloaded cell in commu...Because of different system capacities of base station (BS) or access point (AP) and ununiformity of traffic distribution in different cells, quantities of new call users may be blocked in overloaded cell in communication hot spots. Whereas in some neighboring under-loaded cells, bandwidth may be superfluous because there are only few users to request services. In order to raise resource utilization of the whole heterogeneous networks, several novel load balancing strategies are proposed, which combine the call ad- mission control policy and multi-hop routing protocol of ad-hoc network for load balancing. These loadbalancing strategies firstly make a decision whether to admit a new call or not by considering some parameters like load index and route cost, etc., and then transfer the denied users into neighboring under-loaded cell with surplus channel according to optimum multi-hop routing algorithm. Simulation results show that the proposed load balancing strategies can distribute traffics to the whole heterogeneous wireless netorks, improve the load balance index efficiently, and avoid the call block phenomenon almost absolutely.展开更多
With the development of science, economy and society, the needs for research and exploration of deep space have entered a rapid and stable development stage. Deep Space Optical Network(DSON) is expected to become an i...With the development of science, economy and society, the needs for research and exploration of deep space have entered a rapid and stable development stage. Deep Space Optical Network(DSON) is expected to become an important foundation and inevitable development trend of future deepspace communication. In this paper, we design a deep space node model which is capable of combining the space division multiplexing with frequency division multiplexing. Furthermore, we propose the directional flooding routing algorithm(DFRA) for DSON based on our node model. This scheme selectively forwards the data packets in the routing, so that the energy consumption can be reduced effectively because only a portion of nodes will participate the flooding routing. Simulation results show that, compared with traditional flooding routing algorithm(TFRA), the DFRA can avoid the non-directional and blind transmission. Therefore, the energy consumption in message routing will be reduced and the lifespan of DSON can also be prolonged effectively. Although the complexity of routing implementation is slightly increased compared with TFRA, the energy of nodes can be saved and the transmission rate is obviously improved in DFRA. Thus the overall performance of DSON can be significantly improved.展开更多
In recent years,Delay Tolerant Networks(DTN)have received more and more attention.At the same time,several existing DTN routing algorithms generally have disadvantages such as poor scalability and inability to perceiv...In recent years,Delay Tolerant Networks(DTN)have received more and more attention.At the same time,several existing DTN routing algorithms generally have disadvantages such as poor scalability and inability to perceive changes in the network environment.This paper proposes an AdaptiveSpray routing algorithm.The algorithm can dynamically control the initial maximum message copy number according to the cache occupancy rate of the node itself,and the cache occupancy rate is added as an impact factor to the calculation of the probability of each node meeting the destination node.In the forwarding phase,the node will first compare the meeting probability of itself and the meeting node to the destination node,and then choose different forwarding strategies.The simulation shows that the AdaptiveSpray algorithm proposed in this paper has obvious advantages compared with the existing routing algorithms in terms of message delivery rate and average delay.展开更多
Previous studies show that interconnects occupy a large portion of the timing budget and area in FPGAs.In this work,we propose a time-multiplexing technique on FPGA interconnects.In order to fully exploit this interco...Previous studies show that interconnects occupy a large portion of the timing budget and area in FPGAs.In this work,we propose a time-multiplexing technique on FPGA interconnects.In order to fully exploit this interconnect architecture,we propose a time-multiplexed routing algorithm that can actively identify qualified nets and schedule them to multiplexable wires.We validate the algorithm by using the router to implement 20 benchmark circuits to time-multiplexed FPGAs.We achieve a 38%smaller minimum channel width and 3.8%smaller circuit critical path delay compared with the state-of-the-art architecture router when a wire can be time-multiplexed six times in a cycle.展开更多
基金supported by the National Key R&D Program of China (2020YFB2008400)LAGEO of Chinese Academy of Sciences (LAGEO-2019-2)+11 种基金Program for Science&Technology Innovation Talents in the University of Henan Province (20HASTIT022)21th Project of the Xizang Cultural Inheritance and Development Collaborative Innovation Center in 2018 (21IRTSTHN015)Natural Science Foundation of Xizang Named“Research of Key Technology of Millimeter Wave MIMO Secure Transmission with Relay Enhancement”in 2018Xizang Autonomous Region Education Science“13th Five-year Plan”Major Project for 2018 (XZJKY201803)Natural Science Foundation of Henan under Grant 202300410126Young Backbone Teachers in Henan Province (2018GGJS049)Henan Province Young Talent Lift Project (2020HYTP009)Program for Innovative Research Team in University of Henan Province (21IRTSTHNO15)Equipment Pre-research Joint Research Program of Ministry of Education (8091B032129)Training Program for Young Scholar of Henan Province for Colleges and Universities under Grand (2020GGJS172)Program for Science&Technology Innovation Talents in Universities of Henan Province under Grand (22HASTIT020)Henan Province Science Fund for Distinguished Young Scholars (222300420006).
文摘The huge increase in the communication network rate has made the application fields and scenarios for vehicular ad hoc networks more abundant and diversified and proposed more requirements for the efficiency and quality of data transmission.To improve the limited communication distance and poor communication quality of the Internet of Vehicles(IoV),an optimal intelligent routing algorithm is proposed in this paper.Combined multiweight decision algorithm with the greedy perimeter stateless routing protocol,designed and evaluated standardized function for link stability.Linear additive weighting is used to optimize link stability and distance to improve the packet delivery rate of the IoV.The blockchain system is used as the storage structure for relay data,and the smart contract incentive algorithm based on machine learning is used to encourage relay vehicles to provide more communication bandwidth for data packet transmission.The proposed scheme is simulated and analyzed under different scenarios and different parameters.The experimental results demonstrate that the proposed scheme can effectively reduce the packet loss rate and improve system performance.
文摘A layered algorithm by bidirectional searching is proposed in this paper to solve the problem that it is difficult and time consuming to reach an optimal solution of the route search with multiple parameter restrictions for good quality of service. Firstly, a set of reachable paths to each intermediate node from the source node and the sink node based on adjacent matrix transformation are calculated respectively. Then a temporal optimal path is selected by adopting the proposed heuristic method according to a non-linear cost function. When the total number of the accumulated nodes by bidirectional searching reaches n-2, the paths from two directions to an intermediate node should be combined and several paths via different nodes from the source node to the sink node can be obtained, then an optimal path in the whole set of paths can be taken as the output route. Some simulation examples are included to show the effectiveness and efficiency of the proposed method. In addition, the proposed algorithm can be implemented with parallel computation and thus, the new algorithm has better performance in time complexity than other algorithms. Mathematical analysis indicates that the maximum complexity in time, based on parallel computation, is the same as the polynomial complexity of O(kn2-3kn+k), and some simulation results are shown to support this analysis.
基金This work was supported in part by the National Natural Science Foundation of China under Grant 62271192in part by Central Plains Talents Plan under Grant ZYYCYU202012173+9 种基金in part by theNationalKeyR&DProgramof China underGrant 2020YFB2008400in part by the Program of CEMEE under Grant 2022Z00202Bin part by the LAGEO of Chinese Academy of Sciences underGrantLAGEO-2019-2in part by the Program for Science and Technology Innovation Talents in the University of Henan Province under Grant 20HASTIT022in part by the Natural Science Foundation of Henan under Grant 202300410126in part by the Program for Innovative Research Team in University of Henan Province under Grant 21IRTSTHN015in part by the Equipment Pre-Research Joint Research Program of Ministry of Education under Grant 8091B032129in part by the Training Program for Young Scholar of Henan Province for Colleges and Universities under Grant 2020GGJS172in part by the Program for Science and Technology Innovation Talents in Universities of Henan Province under Grant 22HASTIT020in part by the Henan Province Science Fund for Distinguished Young Scholars under Grant 222300420006.
文摘The improvement of the quality and efficiency of vehicle wireless network data transmission is always a key concern in the Internet of Vehicles(IoV).Routing transmission solved the limitation of transmission distance to a certain extent.Traditional routing algorithm cannot adapt to complex traffic environment,resulting in low transmission efficiency.In order to improve the transmission success rate and quality of vehicle network routing transmission,make the routing algorithm more suitable for complex traffic environment,and reduce transmission power consumption to improve energy efficiency,a comprehensive optimized routing transmission algorithm is proposed.Based on the routing transmission algorithm,an optimization algorithmbased on road condition,vehicle status and network performance is proposed to improve the success rate of routing transmission in the IoV.Relative distance difference and density are used as decision-making indicators to measure Road Side Unit(RSU)assisted transmission.And the Ambient backscatter communication(AmBC)technology and energy collection are used to reduce the energy consumption of routing relay transmission.An energy collection optimization algorithm is proposed to optimize the energy efficiency of AmBC and improve the energy efficiency of transmission.Simulation results show that the proposed routing optimization algorithm can effectively improve the success rate of packet transmission in vehicular ad hoc networks(VANETs),and theAmBC optimization algorithmcan effectively reduce energy consumption in the transmission process.The proposed optimization algorithm achieves comprehensive optimization of routing transmission performance and energy efficiency.
基金supported by the Fundamental Research Funds for the Central Universities(2021RC239)the Postdoctoral Science Foundation of China(2021 M690338)+3 种基金the Hainan Provincial Natural Science Foundation of China(620RC562,2019RC096,620RC560)the Scientific Research Setup Fund of Hainan University(KYQD(ZR)1877)the Program of Hainan Association for Science and Technology Plans to Youth R&D Innovation(QCXM201910)the National Natural Science Foundation of China(61802092,62162021).
文摘Quantum transmission experiments have shown that the success-ful transmission rate of entangled quanta in optical fibers decreases expo-nentially.Although current quantum networks deploy quantum relays to establish long-distance connections,the increase in transmission distance and entanglement switching costs still need to be considered when selecting the next hop.However,most of the existing quantum network models prefer to consider the parameters of the physical layer,which ignore the influence factors of the network layer.In this paper,we propose a meshy quantum network model based on quantum teleportation,which considers both net-work layer and physical layer parameters.The proposed model can reflect the realistic transmission characteristics and morphological characteristics of the quantum relay network.Then,we study the network throughput of different routing algorithms with the same given parameters when multiple source-destination pairs are interconnected simultaneously.To solve the chal-lenges of routing competition caused by the simultaneous transmission,we present greedy memory-occupied algorithm Q-GMOA and random memory-occupied algorithm Q-RMOA.The proposed meshy quantum network model and the memory-occupied routing algorithms can improve the utilization rate of resources and the transmission performance of the quantum network.And the evaluation results indicate that the proposed methods embrace a higher transmission rate than the previous methods with repeater occupation.
文摘The conception of the normalized reliability index weighted by capacity is introduced, which combing the communication capacity, the reliability probability of exchange nodes and the reliability probability of the transmission links, in order to estimate the reliability performance of communication network comprehensively and objectively. To realize the full algebraic calculation, the key problem should be resolved, which is to find an algorithm to calculate all the routes between nodes of a network. A kind of logic algebraic algorithm of network routes is studied and based on this algorithm, the full algebraic algorithm of normalized reliability index weighted by capacity is studied. For this algorithm, it is easy to design program and the calculation of reliability index is finished, which is the foundation of the comprehensive and objective estimation of communication networks. The calculation procedure of the algorithm is introduced through typical examples and the results verify the algorithm.
基金Project supported by the Natural Science Foundation of Jilin Province of China(Grant No.20210101417JC).
文摘Quantum key distribution(QKD)is a technology that can resist the threat of quantum computers to existing conventional cryptographic protocols.However,due to the stringent requirements of the quantum key generation environment,the generated quantum keys are considered valuable,and the slow key generation rate conflicts with the high-speed data transmission in traditional optical networks.In this paper,for the QKD network with a trusted relay,which is mainly based on point-to-point quantum keys and has complex changes in network resources,we aim to allocate resources reasonably for data packet distribution.Firstly,we formulate a linear programming constraint model for the key resource allocation(KRA)problem based on the time-slot scheduling.Secondly,we propose a new scheduling scheme based on the graded key security requirements(GKSR)and a new micro-log key storage algorithm for effective storage and management of key resources.Finally,we propose a key resource consumption(KRC)routing optimization algorithm to properly allocate time slots,routes,and key resources.Simulation results show that the proposed scheme significantly improves the key distribution success rate and key resource utilization rate,among others.
基金Supported by the Science and Technology Surface Project of Yunnan Province(2010ZC142)the Doctoral Foundation of Dali University(KYBS201015),the Scientific Research Program for College Students of Dali University~~
文摘[Objective] This study was to design an intelligent greenhouse real-time monitoring system based on the core technology of Internet of Things in order to meet the needs of agricultural informatization and intellectualization. [Method] Based on the application characteristics of Wireless Sensor Network (WSN), the intelligent greenhouse monitoring system was designed. And for the incompleteness strategy of load balancing in the Low-Energy Adaptive Clustering Hierarchy (LEACH), a Real- time Threshold Routing Algorithm (RTRA) was proposed. [Result] The performance of network lifetime and network delay of RTRA were tested in MATLAB and found that, within the same testing environment, RTRA can save nodes energy consumption, prolong network lifetime, and had better real-time performance than LEACH. The al- gorithm satisfies the crops' requirements on real-time and energy efficiency in the greenhouse system. [Conclusion] For the good performance on real-time, the de- signed intelligent greenhouse real-time monitoring system laid the foundation for the research and development of agricultural informatization and intellectualization.
基金supported by the National Natural Science Foundation of China(No.6217011238 and No.61931011).
文摘As an important part of satellite communication network,LEO satellite constellation network is one of the hot research directions.Since the nonuniform distribution of terrestrial services may cause inter-satellite link congestion,improving network load balancing performance has become one of the key issues that need to be solved for routing algorithms in LEO network.Therefore,by expanding the range of available paths and combining the congestion avoidance mechanism,a load balancing routing algorithm based on extended link states in LEO constellation network is proposed.Simulation results show that the algorithm achieves a balanced distribution of traffic load,reduces link congestion and packet loss rate,and improves throughput of LEO satellite network.
基金Project(60973127) supported by the National Natural Science Foundation of ChinaProject(09JJ3123) supported by the Natural Science Foundation of Hunan Province,China
文摘There were many contradictory evaluation criteria to select next-hop in the delay-disruption tolerance networks(DTN).To solve this problem,an attribute hierarchical model was proposed,in which the predefined criteria were summarized as static identity attributes,forwarding desire attributes and delivery capability attributes(IDC).Based on this model,a novel multi-attributes congestion aware routing(MACAR) scheme with uncertain information for next-hop selection was presented,by adopting an decision theory to aggregate attributes with belief structure and computing partial ordering relations.The simulation results show that MACAR presents higher successful delivery rate,lower average delay and effectively alleviate congestion.
基金This work is supported by the Program of Hainan Association for Science and Technology Plans to Youth R&D Innovation(No.QCXM201910)the National Natural Science Foundation of China(No.61702315,No.61802092)+2 种基金the Scientific Research Setup Fund of Hainan University(No.KYQD(ZR)1837)the Key R&D program(international science and technology cooperation project)of Shanxi Province China(No.201903D421003)Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(No.201802013).
文摘Loop free alternate(LFA)is a routing protection scheme that is currently deployed in commercial routers.However,LFA cannot handle all single network component failure scenarios in traditional networks.As Internet service providers have begun to deploy software defined network(SDN)technology,the Internet will be in a hybrid SDN network where traditional and SDN devices coexist for a long time.Therefore,this study aims to deploy the LFA scheme in hybrid SDN network architecture to handle all possible single network component failure scenarios.First,the deployment of LFA scheme in a hybrid SDN network is described as a 0-1 integer linear programming(ILP)problem.Then,two greedy algorithms,namely,greedy algorithm for LFA based on hybrid SDN(GALFAHSDN)and improved greedy algorithm for LFA based on hybrid SDN(IGALFAHSDN),are proposed to solve the proposed problem.Finally,both algorithms are tested in the simulation environment and the real platform.Experiment results show that GALFAHSDN and IGALFAHSDN can cope with all single network component failure scenarios when only a small number of nodes are upgraded to SDN nodes.The path stretch of the two algorithms is less than 1.36.
基金This research was funded by the Science and Technology Support Plan Project of Hebei Province(grant numbers 17210803D and 19273703D)the Science and Technology Spark Project of the Hebei Seismological Bureau(grant number DZ20180402056)+1 种基金the Education Department of Hebei Province(grant number QN2018095)the Polytechnic College of Hebei University of Science and Technology.
文摘In a large-scale wireless sensor network(WSN),densely distributed sensor nodes process a large amount of data.The aggregation of data in a network can consume a great amount of energy.To balance and reduce the energy consumption of nodes in a WSN and extend the network life,this paper proposes a nonuniform clustering routing algorithm based on the improved K-means algorithm.The algorithm uses a clustering method to form and optimize clusters,and it selects appropriate cluster heads to balance network energy consumption and extend the life cycle of the WSN.To ensure that the cluster head(CH)selection in the network is fair and that the location of the selected CH is not concentrated within a certain range,we chose the appropriate CH competition radius.Simulation results show that,compared with LEACH,LEACH-C,and the DEEC clustering algorithm,this algorithm can effectively balance the energy consumption of the CH and extend the network life.
文摘A novel reliable routing algorithm in mobile ad hoc networks using fuzzy Petri net with its reasoning mechanism was proposed to increase the reliability during the routing selection. The algorithm allows the structured representation of network topology, which has a fuzzy reasoning mechanism for finding the routing sprouting tree from the source node to the destination node in the mobile ad boc environment. Finally, by comparing the degree of reliability in the routing sprouting tree, the most reliable route can be computed. The algorithm not only offers the local reliability between each neighboring node, but also provides global reliability for the whole selected route. The algorithm can be applied to most existing on-demand routing protocols, and the simulation results show that the routing reliability is increased by more than 80% when applying the proposed algorithm to the ad hoc on demand distance vector routing protocol.
基金Supported by the National Natural Science Foundation of China(No.61379057,61073186,61309001,61379110,61103202)Doctoral Fund of Ministry of Education of China(No.20120162130008)the National Basic Research Program of China(973 Program)(No.2014CB046305)
文摘Opportunistic networks are random networks and do not communicate with each other among respective communication areas.This situation leads to great difficulty in message transfer.This paper proposes a reducing energy consumption optimal selection of path transmission(OSPT) routing algorithm in opportunistic networks.This algorithm designs a dynamic random network topology,creates a dynamic link,and realizes an optimized selected path.This algorithm solves a problem that nodes are unable to deliver messages for a long time in opportunistic networks.According to the simulation experiment,OSPT improves deliver ratio,and reduces energy consumption,cache time and transmission delay compared with the Epidemic Algorithm and Spray and Wait Algorithm in opportunistic networks.
基金This work was supported by National Natural Science Foundation of China(No.61672106)Natural Science Foundation of Beijing,China(L192023).
文摘Opportunistic Mobile Social Networks(OMSNs)are kind of Delay Tolerant Networks(DTNs)that leverage characteristics of Mobile Ad Hoc Networks(MANETs)and Social Networks,particularly the social features,to boost performance of routing algorithms.Users in OMSNs communicate to share and disseminate data to meet needs for variety of applications.Such networks have attracted tremendous attention lately due to the data transmission requirement from emerging applications such as IoT and smart city initiatives.Devices carried by human is the carrier of message transmission,so the social features of human can be used to improve the ability of data transmission.In this paper,we conduct a comparative survey on routing algorithms in OMSNs.We first analyze routing algorithms based on three social features.Since node selfishness is not really considered previously in aforementioned routing algorithms,but has significant impact on network performance,we treat node selfishness as another social feature,classify and elaborate routing algorithms based on incentive mechanism.To assess the impact of social features on routing algorithms,we conducted simulation for six routing algorithms and analyzed the simulation result.Finally,we conclude the paper with challenges on design of routing in OMSNs and point out some future research directions.
基金Social Science Fund of Zhejiang Province(No 06CGGL22YBG)
文摘Dijkstra algorithm is a basic algorithm to analyze the vehicle routing problem (VRP) in the terminal distribution of logistics center. According to the actual client demands of service speed and quality, the conceptions of economical distance of delivery and the best routing algorithm were given on the base of the Dijkstra algorithm with consideration of a coefficient of the road hustle degree. Economical distance of delivery is the shortest physical distance between two customers. It is the value of goods delivery in shortest distance when concerning factors such as the road length, the hustle degree, the driveway quantity, and the type of the road. The improved algorithm is being used in the development and application of a distribution path information system in the terminal distribution of logistics center. The simulation and practical case prove that the algorithm is effective and reasonable.
文摘A multipath source self repair routing (MSSRR) algorithm for mobile ad hoc networks is proposed. By using multiple paths which can be repaired by themselves to transmit packets alternately, the network's load is balanced, the link state in the network can be checked in time, the number of the times the route discovery mechanism starts is decreased. If only one route which will be broken can be used to transmit the packets, the route discovery mechanism is restarted.The algorithm is implemented on the basis of dynamic source routing (DSR). The effect of MSSRR on lifetime of the access from the source to the destination and the overhead is discussed. Compared with the performance of DSR,it can be seen that the algorithm can improve the performance of the network obviously and the overhead almost does not increase if the average hop count is larger.
基金Supported by the National Natural Science Foundation of China (No. 60672059, 60496315 )the National High Technology Research and Development Programme of China (No.2006AA01Z233)
文摘Because of different system capacities of base station (BS) or access point (AP) and ununiformity of traffic distribution in different cells, quantities of new call users may be blocked in overloaded cell in communication hot spots. Whereas in some neighboring under-loaded cells, bandwidth may be superfluous because there are only few users to request services. In order to raise resource utilization of the whole heterogeneous networks, several novel load balancing strategies are proposed, which combine the call ad- mission control policy and multi-hop routing protocol of ad-hoc network for load balancing. These loadbalancing strategies firstly make a decision whether to admit a new call or not by considering some parameters like load index and route cost, etc., and then transfer the denied users into neighboring under-loaded cell with surplus channel according to optimum multi-hop routing algorithm. Simulation results show that the proposed load balancing strategies can distribute traffics to the whole heterogeneous wireless netorks, improve the load balance index efficiently, and avoid the call block phenomenon almost absolutely.
基金supported by National Natural Science Foundation of China (61471109, 61501104 and 91438110)Fundamental Research Funds for the Central Universities ( N140405005 , N150401002 and N150404002)Open Fund of IPOC (BUPT, IPOC2015B006)
文摘With the development of science, economy and society, the needs for research and exploration of deep space have entered a rapid and stable development stage. Deep Space Optical Network(DSON) is expected to become an important foundation and inevitable development trend of future deepspace communication. In this paper, we design a deep space node model which is capable of combining the space division multiplexing with frequency division multiplexing. Furthermore, we propose the directional flooding routing algorithm(DFRA) for DSON based on our node model. This scheme selectively forwards the data packets in the routing, so that the energy consumption can be reduced effectively because only a portion of nodes will participate the flooding routing. Simulation results show that, compared with traditional flooding routing algorithm(TFRA), the DFRA can avoid the non-directional and blind transmission. Therefore, the energy consumption in message routing will be reduced and the lifespan of DSON can also be prolonged effectively. Although the complexity of routing implementation is slightly increased compared with TFRA, the energy of nodes can be saved and the transmission rate is obviously improved in DFRA. Thus the overall performance of DSON can be significantly improved.
基金National Key R&D Program of China(2020YFB1807805,2020YFB1807800)CERNET Innovation Project(NGII20190806).
文摘In recent years,Delay Tolerant Networks(DTN)have received more and more attention.At the same time,several existing DTN routing algorithms generally have disadvantages such as poor scalability and inability to perceive changes in the network environment.This paper proposes an AdaptiveSpray routing algorithm.The algorithm can dynamically control the initial maximum message copy number according to the cache occupancy rate of the node itself,and the cache occupancy rate is added as an impact factor to the calculation of the probability of each node meeting the destination node.In the forwarding phase,the node will first compare the meeting probability of itself and the meeting node to the destination node,and then choose different forwarding strategies.The simulation shows that the AdaptiveSpray algorithm proposed in this paper has obvious advantages compared with the existing routing algorithms in terms of message delivery rate and average delay.
文摘Previous studies show that interconnects occupy a large portion of the timing budget and area in FPGAs.In this work,we propose a time-multiplexing technique on FPGA interconnects.In order to fully exploit this interconnect architecture,we propose a time-multiplexed routing algorithm that can actively identify qualified nets and schedule them to multiplexable wires.We validate the algorithm by using the router to implement 20 benchmark circuits to time-multiplexed FPGAs.We achieve a 38%smaller minimum channel width and 3.8%smaller circuit critical path delay compared with the state-of-the-art architecture router when a wire can be time-multiplexed six times in a cycle.