This paper presents a criterion for a polynomial to be non-unstable and for the calculation of the number of eigenvalues which have zero real parts and negative real parts.It generalizes the Routh-Hurwitz criterion an...This paper presents a criterion for a polynomial to be non-unstable and for the calculation of the number of eigenvalues which have zero real parts and negative real parts.It generalizes the Routh-Hurwitz criterion and is very convenient in many applications.展开更多
In this paper,we consider using Schur complements to design preconditioners for twofold and block tridiagonal saddle point problems.One type of the preconditioners are based on the nested(or recursive)Schur complement...In this paper,we consider using Schur complements to design preconditioners for twofold and block tridiagonal saddle point problems.One type of the preconditioners are based on the nested(or recursive)Schur complement,the other is based on an additive type Schur complement after permuting the original saddle point systems.We analyze different preconditioners incorporating the exact Schur complements.We show that some of them will lead to positively stable preconditioned systems if proper signs are selected in front of the Schur complements.These positive-stable preconditioners outperform other preconditioners if the Schur complements are further approximated inexactly.Numerical experiments for a 3-field formulation of the Biot model are provided to verify our predictions.展开更多
文摘This paper presents a criterion for a polynomial to be non-unstable and for the calculation of the number of eigenvalues which have zero real parts and negative real parts.It generalizes the Routh-Hurwitz criterion and is very convenient in many applications.
基金the NIH-RCMI(Grant No.347U54MD013376)the affliated project award from the Center for Equitable Artificial Intelligence and Machine Learning Systems at Morgan State University(Project ID 02232301)+3 种基金the National Science Foundation awards(Grant No.1831950).The work of G.Ju is supported in part by the National Key R&D Program of China(Grant No.2017YFB1001604)the National Natural Science Foundation of China(Grant No.11971221)the Shenzhen Sci-Tech Fund(Grant Nos.RCJC20200714114556020,JCYJ20170818153840322,JCYJ20190809150413261)the Guangdong Provincial Key Laboratory of Computational Science and Material Design(Grant No.2019B030301001).
文摘In this paper,we consider using Schur complements to design preconditioners for twofold and block tridiagonal saddle point problems.One type of the preconditioners are based on the nested(or recursive)Schur complement,the other is based on an additive type Schur complement after permuting the original saddle point systems.We analyze different preconditioners incorporating the exact Schur complements.We show that some of them will lead to positively stable preconditioned systems if proper signs are selected in front of the Schur complements.These positive-stable preconditioners outperform other preconditioners if the Schur complements are further approximated inexactly.Numerical experiments for a 3-field formulation of the Biot model are provided to verify our predictions.