The application environments of wireless Ad hoc networks require that it should support Quality of Service (QoS). However, that is very difficult because of the inherent characteristics of the wireless channel and the...The application environments of wireless Ad hoc networks require that it should support Quality of Service (QoS). However, that is very difficult because of the inherent characteristics of the wireless channel and the frequent changes of network topology caused by nodes movement. An Ad hoc QoS Multicasting (AQM) protocol can solve this problem by previously reserving the neighbor nodes for tracking resource availability. By considering QoS restrictions of transport delay, loss ratio, bandwidth requirement, delay jitter, and throughout, and by finding the adaptive routing, the AQM protocol can obviously improve the efficiency of multicastsession. The results of network simulation show that QoS is essentially applicable to Ad hoc networks.展开更多
In mobile ad hoc networks (MANETs), if a mnltihop route breaks, route maintenance is typically performed to establish a new route which causes high control overhead and long packet delay. To decrease the time of rec...In mobile ad hoc networks (MANETs), if a mnltihop route breaks, route maintenance is typically performed to establish a new route which causes high control overhead and long packet delay. To decrease the time of recovery and the overhead of maintenance, a new route maintenance mechanism in which the maintenance is confined to the vicinity of the broken link is proposed. This mechanism patches broken route through some other nodes in which only nodes near the broken link(s) may need to be substituted and the rest of nodes can be retained on the route. The broken link can be repaired without considering its relative position in the whole path, so the abihty of dealing with hnk failure is improved obviously. Simulation results show that the proposed strategy improves network performance significantly, such as in merits of control overhead and packet delay.展开更多
In a Wireless Mesh Network(WMN),the convenience of a routing strategy strongly depends on the mobility of the intermediate nodes that compose the paths.Taking this behaviour into account,this paper presents a routing ...In a Wireless Mesh Network(WMN),the convenience of a routing strategy strongly depends on the mobility of the intermediate nodes that compose the paths.Taking this behaviour into account,this paper presents a routing scheme that works differently accordingly to the node mobility.In this sense,a proactive routing scheme is restricted to the backbone to promote the use of stable routes.Conversely,the reactive protocol is used for searching routes to or from a mobile destination.Both approaches are simultaneously implemented in the mesh nodes so that the routing protocols share routing information that optimises the network performance.Aimed at guaranteeing the IP compatibility,the combination of the two protocols in the core routers is carried out in the Medium Access Control(MAC)layer.In contrast to the operation in the IP layer where two routing protocols cannot work concurrently,the transfer of the routing tasks to the MAC layer enables the use of multiple independent forwarding tables.Simulation results show the advantage of the proposal in terms of packet losses and data delay.展开更多
文摘The application environments of wireless Ad hoc networks require that it should support Quality of Service (QoS). However, that is very difficult because of the inherent characteristics of the wireless channel and the frequent changes of network topology caused by nodes movement. An Ad hoc QoS Multicasting (AQM) protocol can solve this problem by previously reserving the neighbor nodes for tracking resource availability. By considering QoS restrictions of transport delay, loss ratio, bandwidth requirement, delay jitter, and throughout, and by finding the adaptive routing, the AQM protocol can obviously improve the efficiency of multicastsession. The results of network simulation show that QoS is essentially applicable to Ad hoc networks.
基金the National High Technology Research and Development Progamme of China(No2005AA123820)the National Natural Science Foundation of China(No60472052 and No10577007)
文摘In mobile ad hoc networks (MANETs), if a mnltihop route breaks, route maintenance is typically performed to establish a new route which causes high control overhead and long packet delay. To decrease the time of recovery and the overhead of maintenance, a new route maintenance mechanism in which the maintenance is confined to the vicinity of the broken link is proposed. This mechanism patches broken route through some other nodes in which only nodes near the broken link(s) may need to be substituted and the rest of nodes can be retained on the route. The broken link can be repaired without considering its relative position in the whole path, so the abihty of dealing with hnk failure is improved obviously. Simulation results show that the proposed strategy improves network performance significantly, such as in merits of control overhead and packet delay.
文摘In a Wireless Mesh Network(WMN),the convenience of a routing strategy strongly depends on the mobility of the intermediate nodes that compose the paths.Taking this behaviour into account,this paper presents a routing scheme that works differently accordingly to the node mobility.In this sense,a proactive routing scheme is restricted to the backbone to promote the use of stable routes.Conversely,the reactive protocol is used for searching routes to or from a mobile destination.Both approaches are simultaneously implemented in the mesh nodes so that the routing protocols share routing information that optimises the network performance.Aimed at guaranteeing the IP compatibility,the combination of the two protocols in the core routers is carried out in the Medium Access Control(MAC)layer.In contrast to the operation in the IP layer where two routing protocols cannot work concurrently,the transfer of the routing tasks to the MAC layer enables the use of multiple independent forwarding tables.Simulation results show the advantage of the proposal in terms of packet losses and data delay.