以我国中小企业板上市公司退市风险预警为例,利用弹性反向传播算法(resilient back propagation,Rprop)和因子分析法相结合,建立了一种基于因子分析的Rprop神经网络模型。首先利用因子分析法构建包含财务变量和非财务变量的预警体系;其...以我国中小企业板上市公司退市风险预警为例,利用弹性反向传播算法(resilient back propagation,Rprop)和因子分析法相结合,建立了一种基于因子分析的Rprop神经网络模型。首先利用因子分析法构建包含财务变量和非财务变量的预警体系;其次运用Rprop神经网络模型对我国160家中小企业板上市公司进行退市风险预警实证分析;最后对该模型的有效性进行了实证分析,结果表明,该模型对上市公司退市风险预警的准确性比标准的BP神经网络模型和支持向量机模型分别提高了2.91%和6.09%。因此,该模型可为投资者决策提供较好的参考依据。展开更多
针对标准BP神经网络仅从预测误差负梯度方向修正权值和阈值,存在学习算法收敛速度满、容易陷入局部最小值从而导致模型泛化能力不足的问题.本文提出了一种基于误差反向传播算法(back-propagation algorithm,BP)改进的弹性反向传播算法(r...针对标准BP神经网络仅从预测误差负梯度方向修正权值和阈值,存在学习算法收敛速度满、容易陷入局部最小值从而导致模型泛化能力不足的问题.本文提出了一种基于误差反向传播算法(back-propagation algorithm,BP)改进的弹性反向传播算法(resilient back propagation,Rprop),并与主成分分析法相结合,形成了PCA-Rprop神经网络算法.同时,构建包含财务变量和非财务变量的预警体系,运用Matlab软件对我国195家建筑业(涉及房地产概念)上市公司进行退市风险预警实证分析,实证结果表明PCA-Rprop神经网络算法的退市风险预警准确性相较于标准BP神经网络算法和支持向量机模型分别提高了7.03%和10.29%.因此,该模型有望为利益相关者的风险管控和投资决策提供较好的参考依据.展开更多
文摘以我国中小企业板上市公司退市风险预警为例,利用弹性反向传播算法(resilient back propagation,Rprop)和因子分析法相结合,建立了一种基于因子分析的Rprop神经网络模型。首先利用因子分析法构建包含财务变量和非财务变量的预警体系;其次运用Rprop神经网络模型对我国160家中小企业板上市公司进行退市风险预警实证分析;最后对该模型的有效性进行了实证分析,结果表明,该模型对上市公司退市风险预警的准确性比标准的BP神经网络模型和支持向量机模型分别提高了2.91%和6.09%。因此,该模型可为投资者决策提供较好的参考依据。
文摘针对标准BP神经网络仅从预测误差负梯度方向修正权值和阈值,存在学习算法收敛速度满、容易陷入局部最小值从而导致模型泛化能力不足的问题.本文提出了一种基于误差反向传播算法(back-propagation algorithm,BP)改进的弹性反向传播算法(resilient back propagation,Rprop),并与主成分分析法相结合,形成了PCA-Rprop神经网络算法.同时,构建包含财务变量和非财务变量的预警体系,运用Matlab软件对我国195家建筑业(涉及房地产概念)上市公司进行退市风险预警实证分析,实证结果表明PCA-Rprop神经网络算法的退市风险预警准确性相较于标准BP神经网络算法和支持向量机模型分别提高了7.03%和10.29%.因此,该模型有望为利益相关者的风险管控和投资决策提供较好的参考依据.