期刊文献+
共找到539篇文章
< 1 2 27 >
每页显示 20 50 100
Bimetallic In_(2)O_(3)/Bi_(2)O_(3) Catalysts Enable Highly Selective CO_(2) Electroreduction to Formate within Ultra-Broad Potential Windows 被引量:1
1
作者 Zhongxue Yang Hongzhi Wang +7 位作者 Xinze Bi Xiaojie Tan Yuezhu Zhao Wenhang Wang Yecheng Zou Huai ping Wang Hui Ning Mingbo Wu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期257-264,共8页
CO_(2)electrochemical reduction reaction(CO_(2)RR)to formate is a hopeful pathway for reducing CO_(2)and producing high-value chemicals,which needs highly selective catalysts with ultra-broad potential windows to meet... CO_(2)electrochemical reduction reaction(CO_(2)RR)to formate is a hopeful pathway for reducing CO_(2)and producing high-value chemicals,which needs highly selective catalysts with ultra-broad potential windows to meet the industrial demands.Herein,the nanorod-like bimetallic ln_(2)O_(3)/Bi_(2)O_(3)catalysts were successfully synthesized by pyrolysis of bimetallic InBi-MOF precursors.The abundant oxygen vacancies generated from the lattice mismatch of Bi_(2)O_(3)and ln_(2)O_(3)reduced the activation energy of CO_(2)to*CO_(2)·^(-)and improved the selectivity of*CO_(2)·^(-)to formate simultaneously.Meanwhile,the carbon skeleton derived from the pyrolysis of organic framework of InBi-MOF provided a conductive network to accelerate the electrons transmission.The catalyst exhibited an ultra-broad applied potential window of 1200 mV(from-0.4 to-1.6 V vs RHE),relativistic high Faradaic efficiency of formate(99.92%)and satisfactory stability after 30 h.The in situ FT-IR experiment and DFT calculation verified that the abundant oxygen vacancies on the surface of catalysts can easily absorb CO_(2)molecules,and oxygen vacancy path is dominant pathway.This work provides a convenient method to construct high-performance bimetallic catalysts for the industrial application of CO_(2)RR. 展开更多
关键词 bimetallic catalyst CO_(2)electrochemical reduction reaction FORMATE oxygen vacancy wide potential window
下载PDF
Elucidating the structure-activity relationship of Cu-Ag bimetallic catalysts for electrochemical CO_(2) reduction
2
作者 Qining Huang Lili Wan +1 位作者 Qingxuan Ren Jingshan Luo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期345-351,I0009,共8页
Developing bimetallic catalysts is an effective strategy for enhancing the activity and selectivity of electrochemical CO_(2) reduction reactions,where understanding the structure-activity relationship is essential fo... Developing bimetallic catalysts is an effective strategy for enhancing the activity and selectivity of electrochemical CO_(2) reduction reactions,where understanding the structure-activity relationship is essential for catalyst design.Herein,we prepared two Cu-Ag bimetallic catalysts with Ag nanoparticles attached to the top or the bottom of Cu nanowires.When tested in a flow cell,the Cu-Ag catalyst with Ag nanoparticles on the bottom achieved a faradaic efficiency of 54%for ethylene production,much higher than the catalyst with Ag nanoparticles on the top.The catalysts were further studied in the H-cell and zero-gap MEA cell.It was found that placing the two metals in the intensified reaction zone is crucial to triggering the tandem reaction of bimetallic catalysts.Our work elucidates the structure-activity relationship of bimetallic catalysts for CO_(2) reduction and demonstrates the importance of considering both catalyst structures and cell characteristics to achieve high activity and selectivity. 展开更多
关键词 Electrochemical CO_(2)reduction bimetallic catalyst CU-AG Structure-activity relationship
下载PDF
Bimetallic CoNi single atoms supported on three-dimensionally ordered mesoporous chromia:highly active catalysts for n-hexane combustion
3
作者 Xiuqing Hao Yuxi Liu +4 位作者 Jiguang Deng Lin Jing Jia Wang Wenbo Pei Hongxing Dai 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第7期1122-1137,共16页
Developing the alternative supported noble metal catalysts with low cost,high catalytic efficiency,and good resistance toward carbon dioxide and water vapor is critically demanded for the oxidative removal of volatile... Developing the alternative supported noble metal catalysts with low cost,high catalytic efficiency,and good resistance toward carbon dioxide and water vapor is critically demanded for the oxidative removal of volatile organic compounds(VOCs).In this work,we prepared the mesoporous chromia-supported bimetallic Co and Ni single-atom(Co_(1)Ni_(1)/meso-Cr_(2)O_(3))and bimetallic Co and Ni nanoparticle(Co_(NP)Ni_(NP)/mesoCr_(2)O_(3))catalysts adopting the one-pot polyvinyl pyrrolidone(PVP)-and polyvinyl alcohol(PVA)-protecting approaches,respectively.The results indicate that the Co_(1)Ni_(1)/meso-Cr_(2)O_(3)catalyst exhibited the best catalytic activity for n-hexane(C_(6)H_(14))combustion(T_(50%)and T_(90%)were 239 and 263℃ at a space velocity of 40,000 mL g^(-1)h^(-1);apparent activation energy and specific reaction rate at 260℃ were 54.7 kJ mol^(-1)and 4.3×10^(-7)mol g^(-1)_(cat)s^(-1),respectively),which was associated with its higher(Cr^(5+)+Cr^(6+))amount,large n-hexane adsorption capacity,and good lattice oxygen mobility that could enhance the deep oxidation of n-hexane,in which Ni_(1) was beneficial for the enhancements in surface lattice oxygen mobility and low-temperature reducibility,while Co_(1) preferred to generate higher contents of the high-valence states of chromium and surface oxygen species as well as adsorption and activation of n-hexane.n-Hexane combustion takes place via the Mars van Krevelen(MvK)mechanism,and its reaction pathways are as follows:n-hexane→olefins or 3-hexyl hydroperoxide→3-hexanone,2-hexanone or 2,5-dimethyltetrahydrofuran→2-methyloxirane or 2-ethyl-oxetane→acrylic acid→CO_x→CO_(2)and H_(2)O. 展开更多
关键词 Three-dimensional ordered mesoporous chromium oxide Supported bimetallic single-atom catalyst Cobalt-nickel single atoms n-Hexane combustion Catalytic reaction mechanism
下载PDF
Advancements in transition bimetal catalysts for electrochemical 5-hydroxymethylfurfural(HMF) oxidation
4
作者 Yuwei Li Huiting Huang +4 位作者 Mingkun Jiang Wanlong Xi Junyuan Duan Marina Ratova Dan Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期24-46,共23页
The electrochemical oxidation of 5-hydroxymethylfurfural(HMF) represents a significant avenue for sustainable chemical synthesis, owing to its potential to generate high-value derivatives from biomass feedstocks. Tran... The electrochemical oxidation of 5-hydroxymethylfurfural(HMF) represents a significant avenue for sustainable chemical synthesis, owing to its potential to generate high-value derivatives from biomass feedstocks. Transition metal catalysts offer a cost-effective alternative to precious metals for catalyzing HMF oxidation, with transition bimetallic catalysts emerging as particularly promising candidates. In this review, we delve into the intricate reaction pathways and electrochemical mechanisms underlying HMF oxidation, emphasizing the pivotal role of transition bimetallic catalysts in enhancing catalytic efficiency. Subsequently, various types of transition bimetallic catalysts are explored, detailing their synthesis methods and structural modulation strategies. By elucidating the mechanisms behind catalyst modification and performance enhancement, this review sets the stage for upcoming advancements in the field, ultimately advancing the electrochemical HMF conversion and facilitating the transition towards sustainable chemical production. 展开更多
关键词 HMF oxidation Transition metal catalysts bimetallic catalysts Biomass valorization Electrocatalyst synthesis
下载PDF
Long-range electron synergy over Pt_(1)-Co_(1)/CN bimetallic single-atom catalyst in enhancing charge separation for photocatalytic hydrogen production 被引量:3
5
作者 Man Yang Jing Mei +3 位作者 Yujing Ren Jie Cui Shuhua Liang Shaodong Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期502-509,I0011,共9页
The development of novel single-atom catalysts with optimal electron configuration and economical noble-metal cocatalyst for efficient photocatalytic hydrogen production is of great importance,but still challenging.He... The development of novel single-atom catalysts with optimal electron configuration and economical noble-metal cocatalyst for efficient photocatalytic hydrogen production is of great importance,but still challenging.Herein,we fabricate Pt and Co single-atom sites successively on polymeric carbon nitride(CN).In this Pt_(1)-Co_(1)/CN bimetallic single-atom catalyst,the noble-metal active sites are maximized,and the single-atomic Co_(1)N_4sites are tuned to Co_(1)N_3sites by photogenerated electrons arising from the introduced single-atomic Pt_(1)N_4sites.Mechanism studies and density functional theory(DFT)calculations reveal that the 3d orbitals of Co_(1)N_3single sites are filled with unpaired d-electrons,which lead to the improved visible-light response,carrier separation and charge migration for CN photocatalysts.Thereafter,the protons adsorption and activation are promoted.Taking this advantage of long-range electron synergy in bimetallic single atomic sites,the photocatalytic hydrogen evolution activity over Pt_(1)-Co_(1)/CN achieves 915.8 mmol g^(-1)Pt h^(-1),which is 19.8 times higher than Co_(1)/CN and 3.5 times higher to Pt_(1)/CN.While this electron-synergistic effect is not so efficient for Pt nanoclusters.These results demonstrate the synergistic effect at electron-level and provide electron-level guidance for the design of efficient photocatalysts. 展开更多
关键词 bimetallic single-atom catalyst Long-range electron synergy Charge separation/transfer Carbon nitride Hydrogen production
下载PDF
In-situ constructing Cu_(1)Bi_(1)bimetallic catalyst to promote the electroreduction of CO_(2)to formate by synergistic electronic and geometric effects 被引量:2
6
作者 Houan Ren Xiaoyu Wang +5 位作者 Xiaomei Zhou Teng Wang Yuping Liu Cai Wang Qingxin Guan Wei Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期263-271,共9页
Electrochemical CO_(2)reduction to formate is a potential approach to achieving global carbon neutrality.Here,Cu1Bi1bimetallic catalyst was prepared by a co-precipitation method.It has a ginger like composite structur... Electrochemical CO_(2)reduction to formate is a potential approach to achieving global carbon neutrality.Here,Cu1Bi1bimetallic catalyst was prepared by a co-precipitation method.It has a ginger like composite structure(CuO/CuBi_(2)O_(4))and exhibited a high formate faradaic efficiency of 98.07%at–0.98 V and a large current density of–56.12 mA.cm^(-2)at–1.28 V,which is twice as high as Bi2O3catalyst.Especially,high selectivity(FE^(–)_(HCOO)>85%)is maintained over a wide potential window of 500 mV.In-situ Raman measurements and structure characterization revealed that the reduced Cu1Bi1bimetallic catalyst possesses abundant Cu-Bi interfaces and residual Bi-O structures.The abundant Cu-Bi interface structures on the catalyst surface can provide abundant active sites for CO_(2)RR,while the Bi-O structures may stabilize the CO_(2)^(*–)intermediate.The synergistic effect of abundant Cu-Bi interfaces and Bi-O species promotes the efficient synthesis of formate by following the OCHO^(*)pathway. 展开更多
关键词 CO_(2)electroreduction bimetallic catalyst FORMATE Cu-Bi interfaces Bi-O structure
下载PDF
Synergetic bimetallic catalysts:A remarkable platform for efficient conversion of CO_(2) to high value-added chemicals 被引量:1
7
作者 Jundie Hu Fengyi Yang +3 位作者 Jiafu Qu Yahui Cai Xiaogang Yang Chang Ming Li 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期162-191,I0006,共31页
Carbon dioxide reduction reaction(CO_(2)RR) represents an efficient approach to achieving carbon neutrality and simultaneously generating clean energy.However,the strong stability of CO_(2) molecules and the diversity... Carbon dioxide reduction reaction(CO_(2)RR) represents an efficient approach to achieving carbon neutrality and simultaneously generating clean energy.However,the strong stability of CO_(2) molecules and the diversity of products pose significant challenges.As an emerging material,bimetallic catalysts have been widely reported for their unique advantages,such as tunable electronic structures,suitable adsorption/desorption of CO_(2) and intermediates,and optimizable d-band centers of active sites through bimetallic synergy.These catalysts provide a remarkable platform for converting CO_(2) into high value-added chemicals.This review comprehensively summarizes recent research advances in bimetallic catalysts for CO_(2)RR.Firstly,the challenges associated with CO_(2)RR,including activity and selectivity are analyzed,followed by a discussion on the unique advantages of bimetallic catalysts.Next,their synthesis strategies are categorized into dual-atom site catalysts(DACs),bimetallic nanoparticles and nanoclusters,binary metal semiconductors,and layered double hydroxides(LDHs).Additionally,advanced characterization techniques of bimetallic catalysts and their applications in CO_(2)RR are thoroughly introduced.Finally,the prospects and challenges for the application of bimetallic materials are highlighted.This review aims to provide inspiration for CO_(2)RR into high-value chemicals and shed light on the research of bimetallic materials. 展开更多
关键词 CATALYSIS Carbon dioxide bimetallic Dual-atom site catalysts SYNERGY
下载PDF
Activity and Selectivity in CO Hydrogenation with Silica-supported Ru-Co Bimetallic Cluster-derived Catalysts
8
作者 XIAO Feng-shou and XU Ru-ren (Department of Chemistry, Jitin University, Changchun, 130023)Fukuoka A. and Ichikawa M. (Catalysis Research Center, Hokkaido University, Sapporo 060, Japan) 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 1992年第4期348-354,共7页
The catalytic performance of bimetallic Ru-Co catalysts prepared from a series of H3Ru3Co(CO)12. RuCo2(CO)11 and HRuCo3(CO)12 in CO hydrogenation was investigated, and it was found that the Ru-Co bimetallic carbonyl c... The catalytic performance of bimetallic Ru-Co catalysts prepared from a series of H3Ru3Co(CO)12. RuCo2(CO)11 and HRuCo3(CO)12 in CO hydrogenation was investigated, and it was found that the Ru-Co bimetallic carbonyl cluster-derived catalysts showed a high activity for products, particularly higher oxygenates, compared with the catalysts prepared from impregnation or co-impregnation of monometallic clusters such as [HRu3(CO)11] and Co4(CO)12. The selectivity for oxygenates in CO hydrogenation highly increased with the molar ratio of Co/Ru in the Ru-Co bimetallic cluster to CO/H2 in feed gas. Raising reaction temperature led to an intensive increase of CO conversion and a considerable decrease of selectivity for oxygenates. In situ FT-IR studies revealed that the band at 1584 cm-1 on Ru-Co bimetallic cluster-derived catalysts at 453 K under syngas (CO/H2 = 0. 5) has a good linear relationship to rates of oxygenate formation, which is likely associated with an intermediate to produce oxygenates in CO hydrogenation. 展开更多
关键词 Higher oxygenates ru-co bimetallic catalysts bimetallic carbonyl cluster SiO2
下载PDF
Conjugated polymerized bimetallic phthalocyanine based electrocatalyst with Fe-N_(4)/Co-N_(4) dual-sites synergistic effect for zinc-air battery 被引量:1
9
作者 Shuaifeng Wang Zhongfang Li +5 位作者 Wenjie Duan Peng Sun Jigang Wang Qiang Liu Lei Zhang Yanqiong Zhuang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第11期41-53,I0002,共14页
The bifunctional oxygen catalyst is essential for zinc-air batteries(ZABs).Here,an efficient bifunctional oxygen catalyst,PPcFeCo/3D-G,is obtained throughπ-πinteraction between the conjugated polymerized iron-cobalt... The bifunctional oxygen catalyst is essential for zinc-air batteries(ZABs).Here,an efficient bifunctional oxygen catalyst,PPcFeCo/3D-G,is obtained throughπ-πinteraction between the conjugated polymerized iron-cobalt phthalocyanine(PPcFeCo)with excellent thermal stability and three-dimensional graphene(3D-G).The bimetallic synergistic effect of PPcFeCo,verified by DFT(Density functional theory)calculation,andπ-πinteractions enhances the catalytic activity and durability of the PPcFeCo/3D-G.Regarding electrochemical performance,the PPcFeCo/3D-G with a high electron transfer number(3.98,@0.768 V vs.RHE)has excellent half-wave potential(E_(1/2)=0.890 V vs.RHE)and exhibits outstanding reversibility(ΔE=0.700 V,ΔE=Ej=10-E_(1/2)).The liquid ZAB(LZAB)employed PPcFeCo/3D-G displays a high power density(222 m W cm^(-2)),a specific capacity(792 m A h g-1),and excellent durability(120 h).This work has guiding significance for the preparation of high-efficiency bifunctional catalysts. 展开更多
关键词 Zn-airbattery Bifunctional oxygen catalysts Polymerized iron-cobalt phthalocyanine bimetallic synergy π-πinteraction
下载PDF
Bimetallic catalysts as electrocatalytic cathode materials for the oxygen reduction reaction in microbial fuel cell:A review 被引量:1
10
作者 Ke Zhao Yuanxiang Shu +1 位作者 Fengxiang Li Guosong Peng 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第4期1043-1070,共28页
Microbial fuel cell(MFC) is one synchronous power generation device for wastewater treatment that takes into account environmental and energy issues, exhibiting promising potential. Sluggish oxygen reduction reaction(... Microbial fuel cell(MFC) is one synchronous power generation device for wastewater treatment that takes into account environmental and energy issues, exhibiting promising potential. Sluggish oxygen reduction reaction(ORR) kinetics on the cathode remains by far the most critical bottleneck hindering the practical application of MFC. An ideal cathode catalyst should possess excellent ORR activity, stability, and costeffectiveness, experiments have demonstrated that bimetallic catalysts are one of the most promising ORR catalysts currently. Based on this, this review mainly analyzes the reaction mechanism(ORR mechanisms, synergistic effects), advantages(combined with characterization technologies), and typical synthesis methods of bimetallic catalysts, focusing on the application effects of early Pt-M(M = Fe, Co, and Ni) alloys to bifunctional catalysts in MFC, pointing out that the main existing challenges remain economic analysis, long-term durability and large-scale application, and looking forward to this. At last, the research trend of bimetallic catalysts suitable for MFC is evaluated, and it is considered that the development and research of metal-organic framework(MOF)-based bimetallic catalysts are still worth focusing on in the future, intending to provide a reference for MFC to achieve energy-efficient wastewater treatment. 展开更多
关键词 bimetallic catalysts Oxygen reduction reaction Microbial fuel cell Wastewater treatment Power generation
下载PDF
Research Progress of Nickel Iron Bimetallic Series Electrocatalytic Materials
11
作者 Yan Qiu Wenjing Ma 《Expert Review of Chinese Chemical》 2024年第2期23-26,共4页
Hydrogen energy has become one of the recognized clean energy sources worldwide due to its advantages such as low cost,renewable energy,and green environmental protec-tion.Electrolytic water is currently one of the mo... Hydrogen energy has become one of the recognized clean energy sources worldwide due to its advantages such as low cost,renewable energy,and green environmental protec-tion.Electrolytic water is currently one of the most promising solutions for providing hydrogen fuel.Nickel iron bimetallic electrocatalysts have abundant sources,low cost,clean and pollution-free properties,and strong catalytic performance,This article mainly reviews the development and research of bimetallic nickel iron oxides and nickel iron alloys in recent years,and explores their synthesis methods,properties,and stability in depth. 展开更多
关键词 ELECTROCHEMISTRY bimetallic nickel ferroelectric catalyst hydrogen evolution reaction oxygen evolution reaction
下载PDF
Reactive ball-milling synthesis of Co-Fe bimetallic catalyst for efficient hydrogenation of carbon dioxide to value-added hydrocarbons
12
作者 Haipeng Chen Chenwei Wang +5 位作者 Mengyang Zheng Chenlei Liu Wenqiang Li Qingfeng Yang Shixue Zhou Xun Feng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期210-218,共9页
Catalytic hydrogenation of CO_(2) using renewable hydrogen not only reduces greenhouse gas emissions,but also provides industrial chemicals.Herein,a Co-Fe bimetallic catalyst was developed by a facile reactive ball-mi... Catalytic hydrogenation of CO_(2) using renewable hydrogen not only reduces greenhouse gas emissions,but also provides industrial chemicals.Herein,a Co-Fe bimetallic catalyst was developed by a facile reactive ball-milling method for highly active and selective hydrogenation of CO_(2) to value-added hydrocarbons.When reacted at 320℃,1.0 MPa and 9600 mL h^(-1) g_(cat)^(-1),the selectivity to light olefin(C_(2)^(=)-C_(4)^(=)) and C_(5)+ species achieves 57.3% and 22.3%,respectively,at a CO_(2) co nversion of 31.4%,which is superior to previous Fe-based catalysts.The CO_(2) activation can be promoted by the CoFe phase formed by reactive ball milling of the Fe-Co_(3)O_(4) mixture,and the in-situ Co_(2)C and Fe_(5)C_(2) formed during hydrogenation are beneficial for the C-C coupling reaction.The initial C-C coupling is related to the combination of CO species with the surface carbon of Fe/Co carbides,and the sustained C-C coupling is maintained by self-recovery of defective carbides.This new strategy contributes to the development of efficient catalysts for the hydrogenation of CO_(2) to value-added hydrocarbons. 展开更多
关键词 Reactive ball milling Co-Fe bimetallic catalyst Carbon dioxide Value-added hydrocarbon C–C coupling reaction
下载PDF
Activity and Selectivity of Bimetallic Catalysts Based on SBA-15 for Nitrate Reduction in Water
13
作者 Mouhamad Rachini Mira Jaafar +12 位作者 Nabil Tabaja Sami Tlais Rasha Hamdan Fatima Al Ali Ola Haidar Ali Jaber Mohammad Kassem Eugene Bychkov Lucette Tidahy Renaud Cousin Dorothée Dewaele Tayssir Hamieh Joumana Toufaily 《Materials Sciences and Applications》 CAS 2023年第2期78-93,共16页
Nitrate from the application of nitrogen-based fertilizers in intensive agriculture is a notorious waste product, though it lacks cost-effective solutions for its removal from potential drinking water resources. Catal... Nitrate from the application of nitrogen-based fertilizers in intensive agriculture is a notorious waste product, though it lacks cost-effective solutions for its removal from potential drinking water resources. Catalytic reduction appears to be a promising technique for converting nitrates to benign nitrogen gas. Mesoporous silica SBA-15 is a frequently used catalyst support that has large surface areas and highly ordered nanopores. In this work, mesoporous silica SBA-15 bimetallic catalysts for nitrate reduction were investigated. The catalyst was optimized for the selection of promoter metal (Sn and Cu), noble metal (Pd and Pt) and loading ratios of these metals at different temperatures and reduction conditions. The catalysts prepared were characterized by FT-IR, N2 physisorption, XRD, SEM, and ICP. All catalysts showed the presence of cylindrical mesoporous channels and uniform pore structures that remained even after metals loading. In the presence of a CO<sub>2</sub> buffer, the catalysts 4Pd-1Cu/SBA-15 and 1Pt-1Cu/SBA-15 reduced at 100?C under H2 and 1Pd-1Cu/SBA-15 reduced at 200°C under H2 demonstrated very high nitrate conversion. Furthermore, the forementioned Pd catalysts had higher N2 selectivity (88% - 87%) compared to Pt catalyst (80%). Nitrate conversion by the 4Pd-1Cu/SBA-15 catalyst was significantly decreased to 81% in the absence of CO<sub>2</sub>. 展开更多
关键词 bimetallic catalyst Heterogeneous catalyst Nitrate Reduction SBA-15 XRD BET SEM FTIR ICP
下载PDF
STUDY ON POLYMER—Ru-Co—BIMETALLIC COMPLEXES CATALYSTS Ⅰ. SYNTHESIS OF CATALYSTS AND THEIR USE FOR THE HYDROFORMYLATION
14
作者 汤琪 宗惠娟 +1 位作者 陈宗翰 江英彦 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 1991年第1期39-47,共9页
Six kinds of polymer ligands, supported on SiO_2, containing coordinating atoms P, S and N respectively, have been synthesized. The Ru(Ⅲ)-Co(Ⅱ) bimetallic complexes of these polymer ligands have been obtained and ex... Six kinds of polymer ligands, supported on SiO_2, containing coordinating atoms P, S and N respectively, have been synthesized. The Ru(Ⅲ)-Co(Ⅱ) bimetallic complexes of these polymer ligands have been obtained and examined as catalysts for the hydroformylation of cyclohexene. The effects of reaction temperature, pressure and Co/Ru ratio etc. on the activities of catalysts were investigated in detail. The catalysts are all polymer-noncarbonyl-metal complexes, easily to be prepared, active and stable. From the experimental results it can be suggested that under reaction conditions such polymer-noncarbonyl-metal complexes convert 'in situ' to polymer-carbonyl-metal complexes, thus become active catalysts. The course of this conversion is supposed as a preliminary approach. 展开更多
关键词 Polymer catalyst bimetallic complex Cydohexene HYDROFORMYLATION
下载PDF
Effect of manganese on the catalytic performance of an iron-manganese bimetallic catalyst for light olefin synthesis 被引量:16
15
作者 Tingzhen Li Hulin Wang +2 位作者 Yong Yang Hongwei Xiang Yongwang Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第4期624-632,共9页
A systematic study was carried out to investigate the promotion effect of manganese on the performance of a coprecipitated iron-manganese bimetallic catalyst for the light olefins synthesis from syngas. The catalyst s... A systematic study was carried out to investigate the promotion effect of manganese on the performance of a coprecipitated iron-manganese bimetallic catalyst for the light olefins synthesis from syngas. The catalyst samples were characterized by N2 physisorption, transmis- sion electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (XRD), Mossbauer spectroscopy, H2- differential thermogravimetric analysis (H2-DTG), CO temperature-programmed reduction (CO-TPR) and CO2 temperature-programmed des- orption (CO2-TPD). The Fischer-Tropsch synthesis (FTS) performance of the catalyst was measured at 1.5 MPa, 250 ℃ and syngas with H2/CO ratio of 2.0. The characterization results indicated that the addition of manganese decreases the catalyst crystallite size, and improves the catalyst BET surface area and pore volume. The presence of manganese suppresses the catalyst reduction and carburization in H2, CO and syngas, respectively. The addition of manganese improves the catalytic activity of water-gas shift reaction and suppresses the oxidation of iron carbides in the FTS reaction. The incorporation of manganese improves the catalyst surface basicity and results in a significant improvement in the selectivities to light olefins and heavy hydrocarbons (C5+), and furthermore an inhibition of methane formation in FTS. The pure iron catalyst (Mn-00) has the highest initial FTS catalytic activity (65%) and the lowest selectivity (17.35 wt%) to light olefins (C2=-C4=). The addition of an appropriate amount of manganese can improve the catalyst FTS activity. 展开更多
关键词 light olefin Fischer-Tropsch synthesis iron-manganese bimetallic catalyst CARBURIZATION
下载PDF
Highly effective direct synthesis of DMC from CH_3OH and CO_2 using novel Cu-Ni/C bimetallic composite catalysts 被引量:8
16
作者 Jun Bian Min Xiao +2 位作者 Shuan Jin Wang Yi Xin Lu Yue Zhong Meng 《Chinese Chemical Letters》 SCIE CAS CSCD 2009年第3期352-355,共4页
Novel Cu-Ni/C has been prepared and utilized as an efficient catalyst system in direct synthesis of DMC from CH3OH and CO2.
关键词 Dimethyl carbonate Carbon dioxide bimetallic catalyst CATALYSIS
下载PDF
Hydrogenation of 2‐ethylanthraquinone with bimetallic monolithic catalysts: An experimental and DFT study 被引量:7
17
作者 Yanyan Guo Chengna Dai Zhigang Lei 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第6期1070-1080,共11页
We studied the hydrogenation of 2‐ethylanthraquinone(eAQ) over Pd/SiO2/COR(COR = cordierite) monometallic and Pd‐M/SiO2/COR(M = Ni, Fe, Mn, and Cu) bimetallic monolithic catalysts, which were prepared by the c... We studied the hydrogenation of 2‐ethylanthraquinone(eAQ) over Pd/SiO2/COR(COR = cordierite) monometallic and Pd‐M/SiO2/COR(M = Ni, Fe, Mn, and Cu) bimetallic monolithic catalysts, which were prepared by the co‐impregnation method. Detailed investigations showed that the particle sizes and structures of the Pd‐M(M = Ni, Fe, Mn, and Cu) bimetallic monolithic catalysts were great‐ly affected by the second metal M and the mass ratio of Pd to the second metal M. By virtue of the small particle size and the strong interaction between Pd and Ni of Pd‐Ni alloy, Pd‐Ni bimetallic monolithic catalysts with the mass ratio of Pd/Ni = 2 achieved the highest H2O2 yield(7.5 g/L) and selectivity(95.3%). Moreover, density functional theory calculations were performed for eAQ ad‐sorption to gain a better mechanistic understanding of the molecule‐surface interactions between eAQ and the Pd(1 1 1) or PdM(1 1 1)(M = Ni, Fe, Mn, and Cu) surfaces. It was found that the high activity of the bimetallic Pd‐Ni catalyst was a result of strong chemisorption between Pd3Ni1(1 1 1) and the carbonyl group of eAQ. 展开更多
关键词 bimetallic MONOLITHIC catalyst Alloy 2‐Ethylanthraquinone hydrogenationDFT CALCULATION SYNERGISTIC effect
下载PDF
Effects of the Different Supports on the Activity and Selectivity of Iron-Cobalt Bimetallic Catalyst for Fischer-Tropsch Synthesis 被引量:3
18
作者 Xiangdong Ma Qiwen Sun +2 位作者 Fahai Cao Weiyong Ying Dingye Fang 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2006年第4期335-339,共5页
Silica, alumina, and activated carbon supported iron-cobalt catalysts were prepared by incipient wetness impregnation. These catalysts have been characterized by BET, X-ray diffraction (XRD), and temperature-program... Silica, alumina, and activated carbon supported iron-cobalt catalysts were prepared by incipient wetness impregnation. These catalysts have been characterized by BET, X-ray diffraction (XRD), and temperature-programmed reduction (TPR). Activity and selectivity of iron-cobalt supported on different carriers for CO hydrogenation were studied under the conditions of 1.5 MPa, 493 K, 630 h^-1, and H2/CO ratio of 1.6. The results indicate that the activity, C4 olefin/(C4 olefin+C4 paraffin) ratio, and C5 olefin/(C5 olefin+C5 paraffin) decrease in the order of Fe-Co/SiO2, Fe-Co/AC1, Fe-Co/Al2O3 and Fe- Co/AC2. The activity of Fe-Co/SiO2 reached a maximum. The results of TPR show that the Fe-Co/SiO2 catalyst is to some extent different. XRD patterns show that the Fe-Co/SiO2 catalyst differs significantly from the others; it has two diffraction peaks. The active spinel phase is correlated with the supports. 展开更多
关键词 Fischer-Tropsch synthesis bimetallic catalyst iron COBALT support silica ALUMINA active carbon SYNGAS
下载PDF
SiO_2-supported Au-Ni bimetallic catalyst for the selective hydrogenation of acetylene 被引量:8
19
作者 Mengqian Chai Xiaoyan Liu +6 位作者 Lin Li Guangxian Pei Yujing Ren Yang Su Hongkui Cheng Aiqin Wang Tao Zhang 《Chinese Journal of Catalysis》 EI CSCD 北大核心 2017年第8期1338-1346,共9页
Supported Au catalysts have been reported to exhibit high ethylene selectivity in the hydrogenation of acetylene,but the conversion is relatively low.Adding a second metal to Au has proven to be a promising approach t... Supported Au catalysts have been reported to exhibit high ethylene selectivity in the hydrogenation of acetylene,but the conversion is relatively low.Adding a second metal to Au has proven to be a promising approach to enhance its catalytic performance in acetylene hydrogenation.In this work,SiO2‐supported Au‐Ni bimetallic catalysts were synthesized and investigated in the selective hydrogenation of acetylene.The Au‐Ni bimetallic catalysts exhibited much higher catalytic performance than that of the corresponding monometallic Au or Ni catalysts.By tuning the reduction temperature and/or Ni loading,we obtained an Au‐Ni/SiO2catalyst with optimal performance.The results of transmission electron microscopy imaging revealed that the Au‐Ni bimetallic particles were highly dispersed on the SiO2support.Meanwhile,analysis of the bimetallic catalyst by energy‐dispersive X‐ray spectroscopy,high‐resolution transmission electron microscopy,and in situ diffuse reflectance infrared Fourier transform spectroscopy demonstrated the formation of Au‐Ni alloy,which contributed to the synergistic effect between Au and Ni in the hydrogenation of acetylene. 展开更多
关键词 GOLD NICKEL bimetallic catalyst Synergistic effect Acetylene hydrogenation
下载PDF
PVP-Supported Palladium-Cadmium Bimetallic Catalyst for the Hydrogen Transfer Dechlorination of Aryl Chlorides 被引量:3
20
作者 Ru Hong KANG Jiang Hua MA +1 位作者 Xin Hui LIU Shu Mei HE(Chemistry Department of Flebei Normal University. Shijiazhuang 050016)(Experimental Center of Hebei Normal University. Shijiazhuang 050016) 《Chinese Chemical Letters》 SCIE CAS CSCD 1999年第7期607-610,共4页
PVP-supported bimetallic catalyst, PVP-PdCl2-CdCl2, exhibits extremely high catalytic activity for the hydrogen transfer dechlorination of aryl chlorides in neutral environment. The yields of dechlorination products a... PVP-supported bimetallic catalyst, PVP-PdCl2-CdCl2, exhibits extremely high catalytic activity for the hydrogen transfer dechlorination of aryl chlorides in neutral environment. The yields of dechlorination products are high under mild reaction conditions and the operation is simple. 展开更多
关键词 bimetallic catalyst aryl chlorides hydrogen transfer dechlorination
下载PDF
上一页 1 2 27 下一页 到第
使用帮助 返回顶部