Using the one-atom theory(OA), the atomic states of Ru-electrocatalyst with hcp structure was determined as [Kr](4dn)3.78(4dc)2.22(5sc)1.77(5sf)0.23. The potential curve, elasticity and the temperature dependence of l...Using the one-atom theory(OA), the atomic states of Ru-electrocatalyst with hcp structure was determined as [Kr](4dn)3.78(4dc)2.22(5sc)1.77(5sf)0.23. The potential curve, elasticity and the temperature dependence of linear thermal expansion coefficient and bulk modulus of hcp-Ru were calculated quantitatively. The atomic states of this metal with fcc and bcc structure and liquid state were also studied. According to its atomic states, the relationship between the atomic states and catalytic performance was explained qualitatively and these supplied Ru-metal and electrocatalyst with complete data for optimum designation in accordance with metal material systematic sicence.展开更多
基金Project(50271085 50471058) supported by the National Natural Science Foundation of China Project(04FJ2002) supported by the Natural Science Foundation of Hunan Province, China
文摘Using the one-atom theory(OA), the atomic states of Ru-electrocatalyst with hcp structure was determined as [Kr](4dn)3.78(4dc)2.22(5sc)1.77(5sf)0.23. The potential curve, elasticity and the temperature dependence of linear thermal expansion coefficient and bulk modulus of hcp-Ru were calculated quantitatively. The atomic states of this metal with fcc and bcc structure and liquid state were also studied. According to its atomic states, the relationship between the atomic states and catalytic performance was explained qualitatively and these supplied Ru-metal and electrocatalyst with complete data for optimum designation in accordance with metal material systematic sicence.
基金supported by the National Natural Science Foundation of China (20673040, 20876062)National High-Tech Research and Development Program of China (863) (2009AA05Z119)~~