氮化硅是一种良好的载体,具有较高的水热稳定性和机械稳定性,其表面的氨基基团能够较好地锚定金属,显著提高金属分散度。但是,商品氮化硅比表面积较低,对金属分散作用仍然有限。因此,以自制的高比表面积氮化硅(Si_(3)N_(4))为载体,通过...氮化硅是一种良好的载体,具有较高的水热稳定性和机械稳定性,其表面的氨基基团能够较好地锚定金属,显著提高金属分散度。但是,商品氮化硅比表面积较低,对金属分散作用仍然有限。因此,以自制的高比表面积氮化硅(Si_(3)N_(4))为载体,通过浸渍法制备了不同Ru负载量(质量分数分别为0.5%、1.0%和2.0%)的催化剂(分别为0.5%Ru/Si_(3)N_(4)、1.0%Ru/Si_(3)N_(4)和2.0%Ru/Si_(3)N_(4)),并以商品氮化硅(Si_(3)N_(4)-C)为载体制备了2.0%Ru/Si_(3)N_(4)-C催化剂作为对照组。表征了催化剂的理化性质,测试了其在300℃、0.1 MPa下的CO_(2)加氢反应活性。结果显示,与Si_(3)N_(4)-C相比,Si_(3)N_(4)的比表面积较高(502 m^(2)/g),Si_(3)N_(4)作为载体显著提高了金属分散度,降低了金属粒径,催化剂暴露出更多的活性位点。0.5%Ru/Si_(3)N_(4)的金属粒径较小,展现出强的H_(2)吸附能力,H难以解吸,抑制了中间物种CO加氢生成CH_(4)。随着Ru负载量增加,金属粒径增大,催化剂的CH_(4)选择性更好。Ru/Si_(3)N_(4)系列催化剂中,2.0%Ru/Si_(3)N_(4)的CH_(4)选择性较高(98.8%)。空速为10000 m L/(g·h)时,0.5%Ru/Si_(3)N_(4)的CO选择性为88.2%。与2.0%Ru/Si_(3)N_(4)相比,2.0%Ru/Si_(3)N_(4)-C的金属粒径更大,活性位点较少,活性更低。2.0%Ru/Si_(3)N_(4)和2.0%Ru/Si_(3)N_(4)-C的CO_(2)转化率分别为53.1%和9.2%。Si_(3)N_(4)有效提高了金属分散度,提高了催化剂的CO_(2)加氢反应活性;通过调控Ru负载量控制催化剂金属粒径,可实现对产物CO或CH_(4)选择性的调控。展开更多
Sensitive detection and precise quantitation of trace-level crucial biomarkers in a complex sample matrix has become an important area of research.For example,the detection of high-sensitivity cardiac troponin I (hs-c...Sensitive detection and precise quantitation of trace-level crucial biomarkers in a complex sample matrix has become an important area of research.For example,the detection of high-sensitivity cardiac troponin I (hs-cTnI) is strongly recommended in clinical guidelines for early diagnosis of acute myocardial infarction.Based on the use of an electrode modified by single-walled carbon nanotubes (SWCNTs) and a Ru(bpy)32+-doped silica nanoparticle (Ru@SiO2)/tripropylamine (TPA) system,a novel type of electrochemiluminescent (ECL) magnetoimmunosensor is developed for ultrasensitive detection of hs-cTnI.In this approach,a large amount of[Ru(bpy)3]2+is loaded in SiO2(silica nanoparticles) as luminophores with high luminescent efficiency and SWCNTs as electrode surface modification material with excellent electrooxidation ability for TPA.Subsequently,a hierarchical micropillar array of microstructures is fabricated with a magnet placed at each end to efficiently confine a single layer of immunomagnetic microbeads on the surface of the electrode and enable 7.5-fold signal enhancement In particular,the use of transparent SWCNTs to modify a transparent ITO electrode provides a two-order-of-magnitude ECL signal amplification.A good linear calibration curve is developed for hs-cTnI concentrations over a wide range from 10 fg/ml to 10 ng/ml,with the limit of detection calculated as 8.720 fg/ml (S/N=3).This ultrasensitive immunosensor exhibits superior detection performance with remarkable stability,reproducibility,and selectivity.Satisfactory recoveries are obtained in the detection of hs-cTnI in human serum,providing a potentia analysis protocol for clinical applications.展开更多
The Complex of the ligands containing pyridinecarboxamide with Mn2+, Fe3=,Ru3+ had been Synthesized. The composition andstructure of the metal complex had been determined by UV, IR.TG, XPS and elemental analysis .When...The Complex of the ligands containing pyridinecarboxamide with Mn2+, Fe3=,Ru3+ had been Synthesized. The composition andstructure of the metal complex had been determined by UV, IR.TG, XPS and elemental analysis .When the oxidation of cyclohexenewas catalyzed by the complexes with oxygen as oxided, the conversion reached 45.7%, the seleCtivity of cyclohexenone is 64.6%.Ruthenium complexes exhibits better selectivity for 1,2-cyclohexene oxide.展开更多
The relation of the electrochemiluminescence(ECL) intensity with the shape of perforated and imperforated platinum electrodes has been investigated. ICCD(Intensified charge coupled device) was used to get the images o...The relation of the electrochemiluminescence(ECL) intensity with the shape of perforated and imperforated platinum electrodes has been investigated. ICCD(Intensified charge coupled device) was used to get the images of ECL of Ru(bpy) 3 Cl 2 ·6H 2 O and tripropylamine(TPA) on the electrodes. The results showed that the ECL was concentrated on the edge of the electrode. For the perforated platinum electrode, the ECL intensity was found to be dependent both on the electrode edge and the edge of the holes on the disk electrode. The ECL intensity of Ru(bpy) 3 Cl 2 ·6H 2 O measured on the four hole disk electrode was double higher than that measured on the simple disk electrode and the detection limit was increased approximately by three orders of magnitude from 1 fmol/L to 1 amol/L.展开更多
The fullerene complex, η 2 C 60 [Ru(NO)(PPh 3)] 2, has been prepared by the reaction of C 60 with Ru(NO) 2(PPh 3) 2 under a nitrogen atmosphere and refluxing. The new complex was characterized by means of elemental a...The fullerene complex, η 2 C 60 [Ru(NO)(PPh 3)] 2, has been prepared by the reaction of C 60 with Ru(NO) 2(PPh 3) 2 under a nitrogen atmosphere and refluxing. The new complex was characterized by means of elemental analysis, IR, XPS, electronic spectra and 31 P NMR. The results show that the complex of η 2 form can be formed by C 60 bonding to Ru(NO) 2(PPh 3) 2 in the σ π way and there is hyperconjugation effect in the molecule. So electrons will flow easier and photoelectric effect for this new compound is expected. In addition, the structure of the complex has been supposed. The ruthenium is 4 coordinate in the complex, bonding to two carbon atoms, to one PPh 3 and to one NO.展开更多
Tris(bipyridine)ruthenium(Ⅱ)(Ru(bpy) 2+ 3) was incorporated into mesoporous silicate MCM 48. X ray diffraction and emission spectroscopy were used to investigate the products, Ru(bpy) 2+ 3/MCM 48. The emission spectr...Tris(bipyridine)ruthenium(Ⅱ)(Ru(bpy) 2+ 3) was incorporated into mesoporous silicate MCM 48. X ray diffraction and emission spectroscopy were used to investigate the products, Ru(bpy) 2+ 3/MCM 48. The emission spectra show that the wavelength of maximum intensity( λ max ) for Ru(bpy) 2+ 3 increases with the increase of Ru(bpy) 2+ 3 loading level in MCM 48. The photoluminescent property of Ru(bpy) 2+ 3/MCM 48 was investigated. It was observed that the wavelength maximum intensity( λ max ) for Ru(bpy) 2+ 3/MCM 48 was red shifted when acetone vapor was introduced. [WT5HZ]展开更多
文摘氮化硅是一种良好的载体,具有较高的水热稳定性和机械稳定性,其表面的氨基基团能够较好地锚定金属,显著提高金属分散度。但是,商品氮化硅比表面积较低,对金属分散作用仍然有限。因此,以自制的高比表面积氮化硅(Si_(3)N_(4))为载体,通过浸渍法制备了不同Ru负载量(质量分数分别为0.5%、1.0%和2.0%)的催化剂(分别为0.5%Ru/Si_(3)N_(4)、1.0%Ru/Si_(3)N_(4)和2.0%Ru/Si_(3)N_(4)),并以商品氮化硅(Si_(3)N_(4)-C)为载体制备了2.0%Ru/Si_(3)N_(4)-C催化剂作为对照组。表征了催化剂的理化性质,测试了其在300℃、0.1 MPa下的CO_(2)加氢反应活性。结果显示,与Si_(3)N_(4)-C相比,Si_(3)N_(4)的比表面积较高(502 m^(2)/g),Si_(3)N_(4)作为载体显著提高了金属分散度,降低了金属粒径,催化剂暴露出更多的活性位点。0.5%Ru/Si_(3)N_(4)的金属粒径较小,展现出强的H_(2)吸附能力,H难以解吸,抑制了中间物种CO加氢生成CH_(4)。随着Ru负载量增加,金属粒径增大,催化剂的CH_(4)选择性更好。Ru/Si_(3)N_(4)系列催化剂中,2.0%Ru/Si_(3)N_(4)的CH_(4)选择性较高(98.8%)。空速为10000 m L/(g·h)时,0.5%Ru/Si_(3)N_(4)的CO选择性为88.2%。与2.0%Ru/Si_(3)N_(4)相比,2.0%Ru/Si_(3)N_(4)-C的金属粒径更大,活性位点较少,活性更低。2.0%Ru/Si_(3)N_(4)和2.0%Ru/Si_(3)N_(4)-C的CO_(2)转化率分别为53.1%和9.2%。Si_(3)N_(4)有效提高了金属分散度,提高了催化剂的CO_(2)加氢反应活性;通过调控Ru负载量控制催化剂金属粒径,可实现对产物CO或CH_(4)选择性的调控。
基金The authors acknowledge financial support from the National Natural Science Foundation of China(Grant Nos.62001460,31971368,12202461,and 22104148)the Guangdong Regional Joint Funds for Young Scientists(Grant Nos.2020A1515110201 and 2020A1515110368)+2 种基金Guangdong Provincial General Funding(Grant No.2021A1515220156)Guangdong Basic and Applied Basic Research Funding-Regional Joint Fund(Grant No.2020B1515120040)Shenzhen Science and Technology Research Funding(Grant Nos.JSGG20201103153801005,JSGG20191115141601721,ZDSYS20220527171406014,JCYJ20220818101412027,JCYJ20200109115635440,and JCYJ 20200109115408041).
文摘Sensitive detection and precise quantitation of trace-level crucial biomarkers in a complex sample matrix has become an important area of research.For example,the detection of high-sensitivity cardiac troponin I (hs-cTnI) is strongly recommended in clinical guidelines for early diagnosis of acute myocardial infarction.Based on the use of an electrode modified by single-walled carbon nanotubes (SWCNTs) and a Ru(bpy)32+-doped silica nanoparticle (Ru@SiO2)/tripropylamine (TPA) system,a novel type of electrochemiluminescent (ECL) magnetoimmunosensor is developed for ultrasensitive detection of hs-cTnI.In this approach,a large amount of[Ru(bpy)3]2+is loaded in SiO2(silica nanoparticles) as luminophores with high luminescent efficiency and SWCNTs as electrode surface modification material with excellent electrooxidation ability for TPA.Subsequently,a hierarchical micropillar array of microstructures is fabricated with a magnet placed at each end to efficiently confine a single layer of immunomagnetic microbeads on the surface of the electrode and enable 7.5-fold signal enhancement In particular,the use of transparent SWCNTs to modify a transparent ITO electrode provides a two-order-of-magnitude ECL signal amplification.A good linear calibration curve is developed for hs-cTnI concentrations over a wide range from 10 fg/ml to 10 ng/ml,with the limit of detection calculated as 8.720 fg/ml (S/N=3).This ultrasensitive immunosensor exhibits superior detection performance with remarkable stability,reproducibility,and selectivity.Satisfactory recoveries are obtained in the detection of hs-cTnI in human serum,providing a potentia analysis protocol for clinical applications.
文摘The Complex of the ligands containing pyridinecarboxamide with Mn2+, Fe3=,Ru3+ had been Synthesized. The composition andstructure of the metal complex had been determined by UV, IR.TG, XPS and elemental analysis .When the oxidation of cyclohexenewas catalyzed by the complexes with oxygen as oxided, the conversion reached 45.7%, the seleCtivity of cyclohexenone is 64.6%.Ruthenium complexes exhibits better selectivity for 1,2-cyclohexene oxide.
文摘The relation of the electrochemiluminescence(ECL) intensity with the shape of perforated and imperforated platinum electrodes has been investigated. ICCD(Intensified charge coupled device) was used to get the images of ECL of Ru(bpy) 3 Cl 2 ·6H 2 O and tripropylamine(TPA) on the electrodes. The results showed that the ECL was concentrated on the edge of the electrode. For the perforated platinum electrode, the ECL intensity was found to be dependent both on the electrode edge and the edge of the holes on the disk electrode. The ECL intensity of Ru(bpy) 3 Cl 2 ·6H 2 O measured on the four hole disk electrode was double higher than that measured on the simple disk electrode and the detection limit was increased approximately by three orders of magnitude from 1 fmol/L to 1 amol/L.
文摘The fullerene complex, η 2 C 60 [Ru(NO)(PPh 3)] 2, has been prepared by the reaction of C 60 with Ru(NO) 2(PPh 3) 2 under a nitrogen atmosphere and refluxing. The new complex was characterized by means of elemental analysis, IR, XPS, electronic spectra and 31 P NMR. The results show that the complex of η 2 form can be formed by C 60 bonding to Ru(NO) 2(PPh 3) 2 in the σ π way and there is hyperconjugation effect in the molecule. So electrons will flow easier and photoelectric effect for this new compound is expected. In addition, the structure of the complex has been supposed. The ruthenium is 4 coordinate in the complex, bonding to two carbon atoms, to one PPh 3 and to one NO.
文摘Tris(bipyridine)ruthenium(Ⅱ)(Ru(bpy) 2+ 3) was incorporated into mesoporous silicate MCM 48. X ray diffraction and emission spectroscopy were used to investigate the products, Ru(bpy) 2+ 3/MCM 48. The emission spectra show that the wavelength of maximum intensity( λ max ) for Ru(bpy) 2+ 3 increases with the increase of Ru(bpy) 2+ 3 loading level in MCM 48. The photoluminescent property of Ru(bpy) 2+ 3/MCM 48 was investigated. It was observed that the wavelength maximum intensity( λ max ) for Ru(bpy) 2+ 3/MCM 48 was red shifted when acetone vapor was introduced. [WT5HZ]