V2O5/WO3‐TiO2 and V2O5/WO3‐TiO2‐SiO2 catalysts were prepared by a wetness impregnation method, and both the catalysts were hydrothermally aged at 750℃ in 10 vol%H2O/air for 24 h. The catalysts were evaluated for N...V2O5/WO3‐TiO2 and V2O5/WO3‐TiO2‐SiO2 catalysts were prepared by a wetness impregnation method, and both the catalysts were hydrothermally aged at 750℃ in 10 vol%H2O/air for 24 h. The catalysts were evaluated for NOx conversion using NH3 as the reductant. Hydrothermal ageing decreased the NOx conversion of V2O5/WO3‐TiO2 catalyst severely over the entire measured tem‐perature range. Interestingly, the NH3‐SCR activity of the silica‐modified catalyst at 220–480℃ is enhanced after ageing. The catalysts were characterized by X‐ray diffraction, nitrogen adsorption, X‐ray fluorescence, Raman spectroscopy, H2 temperature‐programmed reduction, and NH3 temper‐ature‐programmed desorption. The addition of silica inhibited the phase transition from anatase to rutile titania, growth of TiO2 crystallite size and shrinkage of catalyst surface area. Consequently, the vanadia species remained highly dispersed and the hydrothermal stability of the V2O5/WO3‐TiO2 catalyst was significantly improved.展开更多
将厌氧发酵残留物作为肥料还田是其资源化利用的有效途径,但国内外对其还田后氨气(NH3)和氧化亚氮(N2O)的排放特征及氮素利用率的报道较少。本研究通过微区试验,探讨了冬季和夏季大棚菜地追施猪粪沼液(DPS)后NH3和N2O的排放速...将厌氧发酵残留物作为肥料还田是其资源化利用的有效途径,但国内外对其还田后氨气(NH3)和氧化亚氮(N2O)的排放特征及氮素利用率的报道较少。本研究通过微区试验,探讨了冬季和夏季大棚菜地追施猪粪沼液(DPS)后NH3和N2O的排放速率及氮素损失率。结果发现, 追施DPS后菜地NH3挥发激增,通常发生在施肥后的48 h 内;而N2O排放量在第一次施肥后大幅增加,随后逐步趋于稳定。追施DPS的处理其NH3和N2O的排放量均显著高于施用化肥的处理,冬季和夏季二者的损失量分别占肥料总量的16.4%~23.2%和24.7%~27.5%。土壤温度、水分和pH对沼液中氮素以NH3和N2O的形式损失的影响较大。展开更多
基金supported by the National Natural Science Foundation of China (51372137)the National High Technology Research and Development Program of China (863 Program,2015AA034603)~~
文摘V2O5/WO3‐TiO2 and V2O5/WO3‐TiO2‐SiO2 catalysts were prepared by a wetness impregnation method, and both the catalysts were hydrothermally aged at 750℃ in 10 vol%H2O/air for 24 h. The catalysts were evaluated for NOx conversion using NH3 as the reductant. Hydrothermal ageing decreased the NOx conversion of V2O5/WO3‐TiO2 catalyst severely over the entire measured tem‐perature range. Interestingly, the NH3‐SCR activity of the silica‐modified catalyst at 220–480℃ is enhanced after ageing. The catalysts were characterized by X‐ray diffraction, nitrogen adsorption, X‐ray fluorescence, Raman spectroscopy, H2 temperature‐programmed reduction, and NH3 temper‐ature‐programmed desorption. The addition of silica inhibited the phase transition from anatase to rutile titania, growth of TiO2 crystallite size and shrinkage of catalyst surface area. Consequently, the vanadia species remained highly dispersed and the hydrothermal stability of the V2O5/WO3‐TiO2 catalyst was significantly improved.
基金Supported by Fundamental Research Funds for Central Universities(HEUCF201403002)Advanced Technique Project Funds of the Manufacture and Information Ministry
文摘将厌氧发酵残留物作为肥料还田是其资源化利用的有效途径,但国内外对其还田后氨气(NH3)和氧化亚氮(N2O)的排放特征及氮素利用率的报道较少。本研究通过微区试验,探讨了冬季和夏季大棚菜地追施猪粪沼液(DPS)后NH3和N2O的排放速率及氮素损失率。结果发现, 追施DPS后菜地NH3挥发激增,通常发生在施肥后的48 h 内;而N2O排放量在第一次施肥后大幅增加,随后逐步趋于稳定。追施DPS的处理其NH3和N2O的排放量均显著高于施用化肥的处理,冬季和夏季二者的损失量分别占肥料总量的16.4%~23.2%和24.7%~27.5%。土壤温度、水分和pH对沼液中氮素以NH3和N2O的形式损失的影响较大。