期刊文献+
共找到187篇文章
< 1 2 10 >
每页显示 20 50 100
~2H-NMR CHARACTERIZATION OF CLAY DISPERSION AND CONFINEMENT EFFECT ON PROBE MOLECULES IN RUBBER/CLAY NANOCOMPOSITE-GELS 被引量:1
1
作者 孙平川 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2009年第1期71-76,共6页
~2H-NMR spectroscopy of the probe molecule,deuterated benzene,was applied to characterize organo-clay dispersion and confinement effect on the local motion of benzene in rubber/clay nanocomposite-gels.The observed ~2H... ~2H-NMR spectroscopy of the probe molecule,deuterated benzene,was applied to characterize organo-clay dispersion and confinement effect on the local motion of benzene in rubber/clay nanocomposite-gels.The observed ~2H line shapes of benzene in intercalated and exfoliated nanocomposites were obviously different,which can be used to estimate clay-dispersion quality.~2H-NMR line shapes also reflect the different influence of intercalated or exfoliated layered-silicates on local motions of benzene,implying that... 展开更多
关键词 rubber/clay nanocomposite NMR clay dispersion CONFINEMENT
下载PDF
The Effect of Stearic Acid on Expanded Organoclay and Rheometric Properties of Natural Rubber/Expanded Organoclay Nanocomposites
2
作者 Mohamad Irfan Fathurrohman Bambang Soegijono Emil Budianto 《材料科学与工程(中英文B版)》 2013年第9期575-581,共7页
关键词 纳米复合材料 有机粘土 流变性能 天然橡胶 硬脂酸 膨胀 场发射扫描电子显微镜 NR胶料
下载PDF
Preparation and Characterization of Natural Rubber/Silica Nanocomposites using Rule of Similarity in Latex 被引量:1
3
作者 罗勇悦 FENG Chunfang +4 位作者 WANG Qinghuang YI Zhifeng QIU Quanfang Kong LX 彭政 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第5期997-1002,共6页
Rule of similarity and latex compounding techniques were combined for the first time to prepare natural rubber/nanosilica (NR/SiO2) nanocomposite with core-shell nanosilica-poly (methyl methacrylate) (SiO2-PMMA)... Rule of similarity and latex compounding techniques were combined for the first time to prepare natural rubber/nanosilica (NR/SiO2) nanocomposite with core-shell nanosilica-poly (methyl methacrylate) (SiO2-PMMA) particles and PMMA-modified natural rubber matrix (NR-PMMA). The micro- structure of SiO2 and nanocomposites with different SiO2 contents was characterized by fourier transform infrared spectroscopy (FTIR); the morphology of nanocomposites was investigated with scanning electron microscopy (SEM); the tensile strength was characterized by tensile testing machine and the thermal stability of composites was studied by thermal gravimetric analysis. Results showed that PMMA chains have successfully grafted onto the surface of SiO2, and the core-shell SiO2-PMMA nanoparticles and NR-PMMA latex have been perfectly incorporated. SiO2-PMMA nanoparticles are evenly distributed over the NR matrix with an average size in the range of 60-100 nm at the low content (SiO2≤ 3 wt%), while aggregations are apparently observed when 5 wt% SiO2 is loaded. In addition, NP/SiO2 composities possess a considerable improvement in ageing resistance compared with the pure NR. The tensile strength of composite increases from 6.99 to 12.72 MPa, reaching the highest value at a 0.5 wt% SiO2 loading, and then the figure decreases gradually because of the aggregation of SiO2 nanoparticles. It is anticipated that the reported process is to provide a simple and economic way for preparing NR composites. 展开更多
关键词 natural rubber SILICA nanocomposite latex compounding rule of similarity
下载PDF
MORPHOLOGY,INTERFACIAL INTERACTION AND PROPERTIES OF STYRENE-BUTADIENE RUBBER/MODIFIED HALLOYSITE NANOTUBE NANOCOMPOSITES 被引量:1
4
作者 贾德民 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2009年第6期857-864,共8页
A natural nanotubular material,halloysite nanotubes(HNTs),was introduced to prepare styrene-butadiene rubber/modified halloysite nanotube(SBR/m-HNT) nanocomposites.Complex of resorcinol and hexamethylenetetramine (RH)... A natural nanotubular material,halloysite nanotubes(HNTs),was introduced to prepare styrene-butadiene rubber/modified halloysite nanotube(SBR/m-HNT) nanocomposites.Complex of resorcinol and hexamethylenetetramine (RH) was used as the interfacial modifier.The structure,morphology and mechanical properties of SBR/m-HNT nanocomposites,especially the interfacial interactions,were investigated.SEM and TEM observations showed that RH can not only facilitate the dispersion and orientation of HNTs in SBR matrix at ... 展开更多
关键词 Styrene-butadiene rubber Halloysite nanotubes Complex of resorcinol and hexamethylenetetramine nanocompositeS Hydrogen bond
下载PDF
Dielectric and Microwave Properties of Natural Rubber Based Nanocomposites Containing Graphene 被引量:2
5
作者 Omar A. Al-Hartomy Ahmed Al-Ghamdi +4 位作者 Nikolay Dishovsky Rossitsa Shtarkova Vladimir Iliev Ibrahim Mutlay Farid El-Tantawy 《Materials Sciences and Applications》 2012年第7期453-459,共7页
The development of carbon nanotubes based materials has been impeded by both their difficult dispersion in the polymer matrix and their high cost. The discovery of graphene and the subsequent development of graphene-b... The development of carbon nanotubes based materials has been impeded by both their difficult dispersion in the polymer matrix and their high cost. The discovery of graphene and the subsequent development of graphene-based polymer nanocomposites is an important addition in the area of nanoscience and technology. In this study the influence of graphene nanoparticles (GNP) in concentrations from 2.0 to 10.0 phr on the dielectric (dielectric permittivity, dielectric loss angle tangent) and microwave (reflection coefficient, attenuation coefficient, shielding effectiveness) properties of nanocomposites on the basis of natural rubber has been investigated in the wide frequency range (1 - 12 GHz). The results achieved allow recommending graphene as a filler for natural rubber based composites to afford specific dielectric and microwave properties, especially when their loading with the much more expensive carbon nanotubes is not possible. 展开更多
关键词 nanocompositeS NATURAL rubber GRAPHENE DIELECTRIC and MICROWAVE Properties
下载PDF
Nanocomposite Polymer Hydrogels Reinforced by Carbon Dots and Hectorite Clay 被引量:1
6
作者 MA Shuai ZHENG Hang +3 位作者 CHEN Yanjun ZOU Jincheng ZHANG Chaocan WANG Yifeng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第2期287-292,共6页
Herein, two nanoparticles with different dimensions, spherical carbon dots (C-dots) and sheetlike hectorite clay, were used as physical crosslinkers to fabricate C-dots-clay-poly(N-isopropylacrylamide)nanocompositehyd... Herein, two nanoparticles with different dimensions, spherical carbon dots (C-dots) and sheetlike hectorite clay, were used as physical crosslinkers to fabricate C-dots-clay-poly(N-isopropylacrylamide)nanocompositehydrogels (coded as C-dots-clay-PNIPAm hydrogels). The mechanical properties, fluorescence features and thermal-responsive properties of the C-dots-clay-PNIPAm hydrogels were evaluated. The experimental results indicate that synergistic effects of C-dots and hectorite clay nanoparticles are able to significantly enhance mechanical properties of the hydrogels. The hydrogels can be stretched up to 1730%with strength as high as 250 kPa when the C-dots concentration is 0.1wt%and the clay concentration is 6wt%. The hydrogels exhibit complete self-healing through autonomic reconstruction of crosslinked network a damaged interface. The hydrogels show favorable thermal-responsive properties with the volume phase transition around 34℃. In addition, the hydrogels are endowed with fluorescence features that are associated with C-dots in the hydrogels. It can be expected that the as-fabricated C-dots-clay-PNIPAm hydrogels are promising for applications in sensors, biomedical carriers and tissue engineering. 展开更多
关键词 polymer hydrogels nanocomposite REINFORCEMENT carbon dots hectorite clay
下载PDF
Fracture behavior of hybrid epoxy nanocomposites based on multi-walled carbon nanotube and core-shell rubber 被引量:1
7
作者 Zewen Zhu Hengxi Chen +5 位作者 Qihui Chen Cong Liu Kwanghae Noh Haiqing Yao Masaya Kotaki Hung-Jue Sue 《Nano Materials Science》 EI CAS CSCD 2022年第3期251-258,共8页
The dispersion of nanoparticles plays a key role in enhancing the mechanical performance of polymer nanocomposites.In this work,one hybrid epoxy nanocomposite reinforced by a well dispersed,zinc oxide functionalized,m... The dispersion of nanoparticles plays a key role in enhancing the mechanical performance of polymer nanocomposites.In this work,one hybrid epoxy nanocomposite reinforced by a well dispersed,zinc oxide functionalized,multi-wall carbon nanotube (Zn O-MWCNT) and core-shell rubber (CSR) was prepared,which possesses both high modulus and fracture toughness while maintaining relatively high glass transition temperature (Tg).The improved fracture toughness from 0.82 MPa mfor neat epoxy to 1.46 MPa mfor the ternary epoxy nanocomposites is resulted from a series of synergistic toughening mechanisms,including cavitation of CSR-induced matrix shear banding,along with the fracture of MWCNTs and crack deflection.The implication of the present study for the preparation of high-performance polymer nanocomposites is discussed. 展开更多
关键词 Carbon nanotube Core-shell rubber Epoxy nanocomposites Fracture toughness Synergistic toughening effect
下载PDF
PREPARATION AND PROPERTIES OF CLAY/POLY(N-ISOPROPYLACRYLAMIDE-co-A CRYL AMIDE) NANOCOMPOSITE HYDROGELS 被引量:1
8
作者 LIU Xiaoli LIU Yang +4 位作者 Zhang WEI JIANG Yongmei GU Chunju ZHU Meifang Adler H. j. 《Chinese Journal of Reactive Polymers》 2006年第1期50-56,共7页
A series of clay/poly(N-isopropylacrylamide-co-acrylamide) nanocomposite hydrogels (S-N-M gels) have been successfully prepared by in situ polymerization. The mechanical properties, swelling behavior of S-N-M gels... A series of clay/poly(N-isopropylacrylamide-co-acrylamide) nanocomposite hydrogels (S-N-M gels) have been successfully prepared by in situ polymerization. The mechanical properties, swelling behavior of S-N-M gels and the transparency changes during polymerization of S-N-M gels have been systematically investigated. Compared to traditional hydrogels, S-N-M gels show excellent tensile properties and their swelling ratio increases with increasing acrylamide (AAm) content. The results of stress relaxation indicate that the stress loss decreases with increasing AAm content. It was surprisingly found that the transparency during all S-N-M gel synthesis changes abruptly, and the changes become more abrupt with increasing N-isopropylacrylamide content. It was concluded that the fact may be related to the hydrophilicity of copolymers. The weaker the hydrophilicity of copolymer, the more apparent the transparency change during S-N-M gels polymerization. We believe the relationship between hydrophilicity of copolymer and transparency changes will help to design novel nanocomposite hydrogels. 展开更多
关键词 clay COPOLYMER HYDROGEL nanocomposite.
下载PDF
Study on Morphology and Mechanical Properties of High-functional Epoxy Based Clay Nanocomposites
9
作者 戴峰 许亚洪 +1 位作者 政亚萍 益小苏 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2005年第3期279-282,共4页
Morphology and mechanical properties of clay/high-functional epoxy nanocomposites are investigated. An intercalated morphology is always observed for clay loadings ≤5 wt %. The glass transition temperature (Tg) of ... Morphology and mechanical properties of clay/high-functional epoxy nanocomposites are investigated. An intercalated morphology is always observed for clay loadings ≤5 wt %. The glass transition temperature (Tg) of the composites decreases with the clay loading, and the impact strength increases first by 10% at 2 wt% clay loading, and is followed by a dramatic decline, while the flexural strength decreases in all cases. 展开更多
关键词 clay nanocomposite high-functional epoxy resin mechanical properties
下载PDF
Structure and Properties of Polyamide 11 Nanocomposites Filled with Fibrous Palygorskite Clay
10
作者 B.Benobeidallah A.Benhamida +3 位作者 A.Dorigato A.Sola M.Messori A.Pegoretti 《Journal of Renewable Materials》 SCIE 2019年第1期89-102,共14页
Various amounts(up to 10 wt%)of palygorskite nanofibers functionalized by 3-aminopropyltriethoxysilane(APTES)coupling agent were used to reinforce polyamide 11 nanocomposites prepared by melt compounding.The covalent ... Various amounts(up to 10 wt%)of palygorskite nanofibers functionalized by 3-aminopropyltriethoxysilane(APTES)coupling agent were used to reinforce polyamide 11 nanocomposites prepared by melt compounding.The covalent bonding of the silane on the palygorskite surface was confirmed by infrared spectroscopy and thermogravimetric analysis.X-ray diffraction revealed the retention of theα-form of polyamide crystals upon the addition of both natural and silane treated palygorskite nanorods.All the investigated nanocomposites showed an improvement of the thermal stability,especially when surface treated palygorskite nanofibers were considered.Tensile tests and dynamic mechanical thermal analyses on the prepared materials evidenced how the incorporation of palygorskite nanofibers significantly increased the elastic and the storage moduli of polyamide,and this enhancement was more evident when natural palygorskite nanorods were used. 展开更多
关键词 POLYAMIDE clay nanocompositeS thermal properties mechanical properties
下载PDF
STRUCTURING & RHEOLOGY OF MOLTEN POLYMER/CLAY NANOCOMPOSITES
11
作者 Yuan-zeXu Yi-binXu 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2005年第2期147-153,共7页
The evolution and the origin of“solid-like state”in molten polymer/clay nanocomposites are studied.Usingpolypropylene/clay hybrid(PPCH)with sufficient maleic anhydride modified PP(PP-MA)as compatibilizer,well exfoli... The evolution and the origin of“solid-like state”in molten polymer/clay nanocomposites are studied.Usingpolypropylene/clay hybrid(PPCH)with sufficient maleic anhydride modified PP(PP-MA)as compatibilizer,well exfoliationyet solid-like state was achieved after annealing in molten state.Comprehensive linear viscoelasticity and non-lineartheological behaviors together with WAXD and TEM are studied on PPCH at various dispersion stages focusing on time,temperature and deformation dependencies of the“solid-like”state in molten nanocomposites.Based on these,it is revealedthat the solid-structure is developed gradually along with annealing through the stages of inter-layer expansion by PP-MA,the diffusion and association of exfoliated silicate platelets,the formation of band/chain structure and,finally,a percolatedclay associated network,which is responsible for the melt rigidity or solid-like state.The network will be broken down bymelt frozen/crystallization and weakened at large shear or strong flow and,even more surprisingly,may be disrupted by usingtrace amount of silane coupling agent which may block the edge interaction of platelets.The solid-like structure causescharacteristic non-linear rheological behaviors,e.g.residual stress after step shear,abnormal huge stress overshoots in stepflows and,most remarkably,the negative first normal stress functions in steady shear or step flows.The rheological andstructural arguments challenge the existing models of strengthened entangled polymer network by tethered polymer chainsconnecting clay particles or by chains in confined melts or frictional interaction among tactoids.A scheme of percolatednetworking of associated clay platelets,which may in band form of edge connecting exfoliated platelets,is suggested toexplain previous experimental results. 展开更多
关键词 RHEOLOGY Solid-like state nanocomposites Polypropylene/clay Negative first normal stress.
下载PDF
Influence of clay concentration on the morphology and properties of clay-epoxy nanocomposites prepared by in-situ polymerization under ultrasonication
12
作者 Jinwei Wang Xianghua Kong Lei Cheng Yedong He 《Journal of University of Science and Technology Beijing》 CSCD 2008年第3期320-323,共4页
To investigate the effect of clay concentration on the structures and properties of bisphenol-A epoxy/nanoclay composites, three composites with organoclay concentrations of 2.5wt%, 5wt%, and 7.5wt% of the epoxy resin... To investigate the effect of clay concentration on the structures and properties of bisphenol-A epoxy/nanoclay composites, three composites with organoclay concentrations of 2.5wt%, 5wt%, and 7.5wt% of the epoxy resin were prepared by in-situ polymerization under mechanical stirring followed by ultrasonic treatment. The clay aggregates on micro-scale indicate the absence of fully exfoliated nanocomposites. The layer space decreases with the increase of clay concentration, which suggests that the exfoliation would be constrained if more clay is added as the ultrasonic force is exerted. The thermal decomposition temperature remains almost unchanged with the increase of clay concentration. The glass transition temperature of the composites decreases slightly with the increase of clay concentration, whereas the storage modulus increases with the increase of clay concentration. 展开更多
关键词 nanocomposite thermal properties mechanical properties clay concentration ultrasonication
下载PDF
Effect of functionally-graded interphase on the elasto-plastic behavior of nylon-6/clay nanocomposites;a numerical study
13
作者 Maziyar Bazmaraa Mohammad Silani Iman Dayyani 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第1期177-184,共8页
In nanocomposites,the interphase thickness may be comparable to the size of nano-particles,and hence,the effect of interphase layers on the mechanical properties of nanocomposites may be substantial.The interphase thi... In nanocomposites,the interphase thickness may be comparable to the size of nano-particles,and hence,the effect of interphase layers on the mechanical properties of nanocomposites may be substantial.The interphase thickness to the nano-particle size ratio and properties variability across the interphase thickness are the most important affecting parameters on the overall behavior of nanocomposites.In this study,the effect of properties variability across the interphase thickness on the overall elastic and elastoplastic properties of a polymeric clay nanocomposite(PCN)using a functionally graded(FG)interphase is investigated in detail.The results of the computational homogenization on the mesoscopic level show that Young’s modulus variation of the interphase has a significant effect on the overall elastic response of nanocomposites in a higher clay weight ratio(Wt).Moreover,strength variation through the interphase has a notable effect on the elasto-plastic properties of PCNs.Also,the increase or decrease in stiffness of interphase from clay to matrix and vice versa have a similar effect in the overall behavior of nanocomposites. 展开更多
关键词 Nylon 6/clay nanocomposites FG Interphase Computational homogenization
下载PDF
Fracture Toughness Studies of Polypropylene- Clay Nanocomposites and Glass Fibre Reinfoerced Polypropylene Composites
14
作者 A. Ramsaroop K. Kanny T. P. Mohan 《Materials Sciences and Applications》 2010年第5期301-309,共9页
In this paper, a comparative study on the fracture toughness of woven glass fibre reinforced polypropylene, chopped glass fibre reinforced polypropylene and nanoclay filled polypropylene composites is presented. Nanoc... In this paper, a comparative study on the fracture toughness of woven glass fibre reinforced polypropylene, chopped glass fibre reinforced polypropylene and nanoclay filled polypropylene composites is presented. Nanoclays (Cloisite 15A) of 1 wt. % to 5 wt. % were filled in polypropylene (PP) matrix and they were subjected to fracture toughness stu-dies. The specimen with 5 wt. % nanoclay showed 1.75 times and 3 times improvement in critical stress intensity factor (KIC) and strain energy release rate (GIC), respectively, over virgin PP. On the other hand, 3 wt. % nanoclay PP composites showed superior crack containment properties. These structural changes of composite specimens were examined using Transmission Electron Microscopy (TEM) and X-ray diffraction (XRD) methods. It showed that exfoli-ated nanocomposite structures were formed up to 3 wt. % nanoclay, whereas, intercalated nanocomposite structures formed above 3 wt. % nanoclay in the PP matrix. Furthermore, the woven fibre reinforced PP composites demonstrated superior crack resistant properties than that of clay filled nanocomposites and chopped fibre PP composites. However, KIC and GIC values for woven fibre composites were lesser than that of chopped fibre composites. Moreover, KIC and GIC values for both nanoclay filled PP composites and woven fibre composites are comparable even though the clay filled PP demonstrated catastrophic failure. Also, the crack propagation rate of PP-nanoclay composites is comparable to that of chopped fibre composites. 展开更多
关键词 FIBRE Reinforced Composites Polymer clay nanocomposites Stress Intensity Factor CRACK Growth CRACK INITIATION Fracture TOUGHNESS
下载PDF
Improving the Combined State of Rubber-Clay CompositeInterface by Applying Coupling Agent 被引量:1
15
作者 黄继泰 戴劲草 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 1997年第1期72-77,共6页
The surface modification of clay fines was carried out by using silanecoupling agent. By means of IR spectra etc, a study was made on the combined state ofcoupling agent and clay. A rubber--clay composite material wit... The surface modification of clay fines was carried out by using silanecoupling agent. By means of IR spectra etc, a study was made on the combined state ofcoupling agent and clay. A rubber--clay composite material with excellent performancehas been prepared. 展开更多
关键词 silane coupling agent rubber clay composite interface
下载PDF
Preparation and Properties of a New Type of Poly(butylene-terephthalate)with Layered Silicate Nanocomposites 被引量:1
16
作者 柯扬船 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2003年第6期701-708,共8页
In this paper, poly(butylene-terephthalate)-layered silicate of clay nanocomposites (NPBT) are reported. Their thermal properties, heat distortion temperature (HDT) and crystallization nucleation are investigated. NPB... In this paper, poly(butylene-terephthalate)-layered silicate of clay nanocomposites (NPBT) are reported. Their thermal properties, heat distortion temperature (HDT) and crystallization nucleation are investigated. NPBT samples have apparent viscosity over 0.85, HDT of 30℃ to 50℃ higher than that of poly (butylene-terephthalate) (PBT) for clay load from 1.0% to 10.0% (by mass), and higher capability to accommodate clay than other polymers. The nonisothermal crystallization experiments indicate that the better thermal degradation behavior and crystallization rate of NPBT are 50% higher than PBT, and its injection mould processing temperature is lowered from 110℃ to 55℃. NPBT samples are characterized by several techniques. X-ray shows an original clay interlayer distance enlarged from 1.0 nm to 2.5 nm, while both TBM and AFM indicate an average size from 30nm to lOOnm of exfoliated clay layers, and 3%(by mass) of particle agglomeration being phase separated from PBT matrix, which are factors on some mechanical properties decrease of NPBT. The disappearance of spherulitic morphology in NPBT resulted from layers nucleation is detected. Improving NPBT properties by treating clay with long chain organic reagent and controlling the way to load it is suggested. 展开更多
关键词 poly(butylene-terephthalate)-layered silicate of clay nanocomposites crystallization nucleation thermal properties phase separation
下载PDF
The Thermal and Mechanical Properties of Ultra-High Molecular Weight Polyethylene/Montmorillonite (UHMWPE/MMT) Nanocomposites Hybrid Gel Using Pressure-Induced Flow (PIF) Processing
17
作者 BABIKER Musa E 张森 +3 位作者 冯小玲 王广成 汤轶飞 余木火 《Journal of Donghua University(English Edition)》 EI CAS 2011年第2期158-164,共7页
Hybrid organic-inorganic polymer nanocomposites incorporating organically modified montmorillonite (MMT) and ultra-high molecular weight polyethylene (UHMWPE) were examined. UHMWPE/MMT hybrid nanocomposites were prepa... Hybrid organic-inorganic polymer nanocomposites incorporating organically modified montmorillonite (MMT) and ultra-high molecular weight polyethylene (UHMWPE) were examined. UHMWPE/MMT hybrid nanocomposites were prepared using gel and pressure-induced flow(PIF) processing methods at a gel weight concentration of 8% UHMWPE with various organoclay contents (0, 0.4, 0.8, 1.2, and 1.6 parts per hundred parts). The interlayer properties of the nanocomposites were studied by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The thermal and mechanical interfacial properties of the nanocomposites were investigated through thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and the use of a universal test machine (UTM). TEM indicates that the nanocomposites are formed upon dispersion of MMT in the polymer matrix. From the DSC, TGA, and DMA results, we find that the thermal stability of the UHMWPE nanocomposites increases as the MMT content increases. The nanocomposites show higher tensile strengths than pure UHMWPE gel sheet. These findings indicate that the interfacial and mechanical properties are improved by the addition of MMT and PIF processing. 展开更多
关键词 UHMWPE/MMT clay nanocomposites gel processing pressure-induced flow PIF processing mechanical and thermal properties
下载PDF
Incorporation of Clay into Natural Rubber (Hevea) for the Production of Tile Adhesive
18
作者 Durand Hermann Ohouo Conand Honoré Kouakou +2 位作者 Moro Olivier Boffoue Edjikémé Eméruwa Brahiman Traoré 《Open Journal of Composite Materials》 2022年第1期30-40,共11页
Natural rubber latex is </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">white liquid in the form of </span><span style="... Natural rubber latex is </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">white liquid in the form of </span><span style="font-family:Verdana;">the</span><span style="font-family:Verdana;"> colloidal dispersion of rubber globules suspended in </span><span style="font-family:Verdana;">the </span><span style="font-family:""><span style="font-family:Verdana;">aqueous liquid. Produced in large quantities in Ivory Coast, the local transformation of natural latex has so far remained insignificant, although some attempts have been made to use it in the manufacture of flexible facade briquettes for rounded walls. Thus, this study aims to incorporate clay as a filler in natural latex for use as an adhesive for tile installation. To do this, diffe</span><span style="font-family:Verdana;">rent proportions of clay paste were added to the natural latex and the resulting mixtures were used to make the sample and tile adhesive. From the analysis of the results obtained, it appears that the samples with a clay paste density of 0.8 and 1 absorb less water and show</span></span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> good pull-out strength. The mixtu</span><span style="font-family:""><span style="font-family:Verdana;">res of 30% and 35% latex and 0.8 </span><span><span style="font-family:Verdana;">and 1 clay paste density respectively have pullout stresses greater than 1 N/mm</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">. According to</span></span><span style="font-family:Verdana;"> NF EN 1348, these adhesives can therefore be used as tile adhesive. 展开更多
关键词 Adhesive Mortar rubber Latex clay TILE Adhesion
下载PDF
Synthesis of biochar/clay mineral nanocomposites using oil shale semi-coke waste for removal of organic pollutants 被引量:1
19
作者 Feng Zhao Bin Mu +4 位作者 Tenghe Zhang Chunjuan Dong Yongfeng Zhu Li Zong Aiqin Wang 《Biochar》 SCIE CAS CSCD 2023年第1期123-143,共21页
Due to the poor surface/interfacial interaction and the large gaps in the size and microstructure between biomass and clay mineral,it was difficult to adjust the structure and performance of biochar/clay mineral compo... Due to the poor surface/interfacial interaction and the large gaps in the size and microstructure between biomass and clay mineral,it was difficult to adjust the structure and performance of biochar/clay mineral composites at the molecular level.Herein,oil shale semi-coke composed of multi-minerals and organic matters was used as a promising precursor to prepare biochar/clay mineral nanocomposites via phosphoric acid-assisted hydrothermal treatment followed by KOH activation for removal of organic pollutants from aqueous solution.The results revealed that the nanocomposites presented well-defined sheet-like morphology,and the carbon species uniformly anchored on the surface of clay minerals.With the changes in the pore structure,surface charge and functional groups after two-step modification,the nanocomposites exhibited much better adsorption property toward organic pollutants than the raw oil shale semi-coke,and the maximum adsorption capacities of methylene blue,methyl violet,tetracycline,and malachite green were 165.30 mg g^(−1),159.02 mg g^(−1),145.89 mg g^(−1),and 2137.36 mg g^(−1),respectively.The adsorption mechanisms involved electrostatic attraction,π-πstacking and hydrogen bonds.After five consecutive adsorption-desorption,there was no obvious decrease in the adsorption capacity of malachite green,exhibiting good cyclic regeneration performance.It is expected to provide a feasible strategy for the preparation of biochar/clay mineral nanocomposites with the excellent adsorption performances for removal of organic pollutants based on full-component resource utilization of oil shale semi-coke. 展开更多
关键词 Oil shale semi-coke clay mineral Biochar nanocomposites Adsorption mechanism Solid waste resource utilization
原文传递
High-temperature Thermo-oxidative Aging of Vulcanized Natural Rubber Nanocomposites:Evolution of Microstructure and Mechanical Properties
20
作者 Zhou-Xian Li Yi-Ran Kong +3 位作者 Xiang-Fei Chen Ya-Jiang Huang Ya-Dong Lv Guang-Xian Li 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2023年第8期1287-1297,I0010,共12页
The aging of natural rubber(NR)at high temperatures will seriously affect its service lifetime in many key applications.In the present work,the changes in microstructure and mechanical properties of semi-efficient vul... The aging of natural rubber(NR)at high temperatures will seriously affect its service lifetime in many key applications.In the present work,the changes in microstructure and mechanical properties of semi-efficient vulcanized NR/carbon black(CB)vulcanizates during thermooxidative aging at high temperatures(150-200℃)and a moderate temperature(95℃)were compared.At high temperatures,a two-stage aging behavior,which was characteristic of a first rapid decline and then a continuous rise in the crosslinking density(ve),was identified and was found to be closely related to the depletion behavior of antioxidants.The surface cracking behavior observed in the second stage of high-temperature aging was discussed in terms of the grafting reaction of macromolecular radicals on CB particles and thermal expansion.In contrast,the aging of NR at moderate temperatures was much mild,which featured a continuous increase in ve and an oxidation mechanism dominated by peroxy radicals attacking double bonds.In general,the mechanical properties of NR vulcanizates during high-temperature aging depended on the competition effects of structural evolution in the crosslinked network and oxidation-induced chain scission. 展开更多
关键词 Natural rubber nanocomposites High-temperature Thermo-oxidative aging
原文传递
上一页 1 2 10 下一页 到第
使用帮助 返回顶部