For ultra-low-carbon(ULC)steel production,the higher oxygen content before Ruhrstahl-Heraeus(RH)decarburization(de-C)treatment could shorten the de-C time in the RH degasser.However,this would lead to oxidation rates ...For ultra-low-carbon(ULC)steel production,the higher oxygen content before Ruhrstahl-Heraeus(RH)decarburization(de-C)treatment could shorten the de-C time in the RH degasser.However,this would lead to oxidation rates being exceeded by molten steel production,affecting ULC steel surface quality.In this work,a carbon powder addition(CPA)process was proposed to reduce the dissolved oxygen content at the end of RH de-C through addition of carbon powder to molten steel in the vacuum vessel.Carbon and oxygen behavior during the CPA and conventional process was then studied.The results demonstrated that the de-C rate with CPA was lower compared to the conventional process,but the carbon content at the end of de-C presented no difference.The de-C reaction for CPA process took place in the four reaction sites:(1)within the bulk steel where the spontaneous CO bubbles form;(2)splashing area on the liquid steel surface;(3)Ar bubble surface;(4)molten steel surface.The CPA process could significantly reduce the dissolved oxygen content at the end of de-C,the sum content of FeO and MnO in the slag,the aluminum consumption,and the defect rate of rolled products.This was beneficial in improving ULC steel cleanliness.展开更多
Based on the industrial production of non-oriented silicon steel, the rare earth (RE) treatment during the Ruhrstahl Heraeus (RH) refining process was studied. The morphology and the size distribution were observe...Based on the industrial production of non-oriented silicon steel, the rare earth (RE) treatment during the Ruhrstahl Heraeus (RH) refining process was studied. The morphology and the size distribution were observed for the steel specimens treated with different RE treatment conditions. Furthermore, the formation and change of the nonmetallic inclusion characteristics of finished steel sheets after the RE treatment were discussed. The results have shown that in the present work,the suitable RE metal additions are 0.6 -0.9 kg/t steel. After the suitable RE treatment,the formation of AIN and MnS inclusions were restrained, and the aggregation, flotation and removal of nonmetallic inclusions were efficiently promoted and the cleanliness of liquid steel was significantly increased. Meanwhile, the total oxygen concentration reached the minimum value and thle desulfurization efficiency was optimal ,and the type of main inclusions was approximately spherical or elliptical spherical RE radicle inclusions whose size was relatively large.展开更多
基金financially supported by the National Natural Science Foundation of China(No.51874021)Fundamental Research Funds for the Central Universities of China(No.FRF-IC-18-002)State Key Laboratory of Advanced Metallurgy Foundation of China(No.41618019)
文摘For ultra-low-carbon(ULC)steel production,the higher oxygen content before Ruhrstahl-Heraeus(RH)decarburization(de-C)treatment could shorten the de-C time in the RH degasser.However,this would lead to oxidation rates being exceeded by molten steel production,affecting ULC steel surface quality.In this work,a carbon powder addition(CPA)process was proposed to reduce the dissolved oxygen content at the end of RH de-C through addition of carbon powder to molten steel in the vacuum vessel.Carbon and oxygen behavior during the CPA and conventional process was then studied.The results demonstrated that the de-C rate with CPA was lower compared to the conventional process,but the carbon content at the end of de-C presented no difference.The de-C reaction for CPA process took place in the four reaction sites:(1)within the bulk steel where the spontaneous CO bubbles form;(2)splashing area on the liquid steel surface;(3)Ar bubble surface;(4)molten steel surface.The CPA process could significantly reduce the dissolved oxygen content at the end of de-C,the sum content of FeO and MnO in the slag,the aluminum consumption,and the defect rate of rolled products.This was beneficial in improving ULC steel cleanliness.
文摘Based on the industrial production of non-oriented silicon steel, the rare earth (RE) treatment during the Ruhrstahl Heraeus (RH) refining process was studied. The morphology and the size distribution were observed for the steel specimens treated with different RE treatment conditions. Furthermore, the formation and change of the nonmetallic inclusion characteristics of finished steel sheets after the RE treatment were discussed. The results have shown that in the present work,the suitable RE metal additions are 0.6 -0.9 kg/t steel. After the suitable RE treatment,the formation of AIN and MnS inclusions were restrained, and the aggregation, flotation and removal of nonmetallic inclusions were efficiently promoted and the cleanliness of liquid steel was significantly increased. Meanwhile, the total oxygen concentration reached the minimum value and thle desulfurization efficiency was optimal ,and the type of main inclusions was approximately spherical or elliptical spherical RE radicle inclusions whose size was relatively large.