Despite the presence of various construction project cost estimate softwares, human experience and knowledge cannot be disregarded. This fact has been proven in practice, where the success of construction cost estimat...Despite the presence of various construction project cost estimate softwares, human experience and knowledge cannot be disregarded. This fact has been proven in practice, where the success of construction cost estimate process is mainly based on knowledge of human estimator. The main question concerns what human knowledge determines the success of the construction cost estimation process. To address this question we have applied Delphi technique and the output is eleven factors that are enough to precisely represent construction cost estimator knowledge. Then we have used First Order Logic (FOL) to represent these factors in terms of predicates and rules. These FOL rules could be used for evaluating construction cost estimator knowledge in five classes: fail, pass, acceptable, good, and very good. As a validation process we have done experiments using history data and the results have proved the accuracy of our proposed method.展开更多
Hall sensor is widely used for estimating rotor phase of permanent magnet synchronous motor(PMSM). And rotor position is an essential parameter of PMSM control algorithm, hence it is very dangerous if Hall senor fault...Hall sensor is widely used for estimating rotor phase of permanent magnet synchronous motor(PMSM). And rotor position is an essential parameter of PMSM control algorithm, hence it is very dangerous if Hall senor faults occur. But there is scarcely any research focusing on fault diagnosis and fault-tolerant control of Hall sensor used in PMSM. From this standpoint, the Hall sensor faults which may occur during the PMSM operating are theoretically analyzed. According to the analysis results, the fault diagnosis algorithm of Hall sensor, which is based on three rules, is proposed to classify the fault phenomena accurately. The rotor phase estimation algorithms, based on one or two Hall sensor(s), are initialized to engender the fault-tolerant control algorithm. The fault diagnosis algorithm can detect 60 Hall fault phenomena in total as well as all detections can be fulfilled in 1/138 rotor rotation period. The fault-tolerant control algorithm can achieve a smooth torque production which means the same control effect as normal control mode (with three Hall sensors). Finally, the PMSM bench test verifies the accuracy and rapidity of fault diagnosis and fault-tolerant control strategies. The fault diagnosis algorithm can detect all Hall sensor faults promptly and fault-tolerant control algorithm allows the PMSM to face failure conditions of one or two Hall sensor(s). In addition, the transitions between health-control and fault-tolerant control conditions are smooth without any additional noise and harshness. Proposed algorithms can deal with the Hall sensor faults of PMSM in real applications, and can be provided to realize the fault diagnosis and fault-tolerant control of PMSM.展开更多
Microbial population and enzyme activities are the significant indicators of soil strength.Soil microbial dynamics characterize microbial population and enzyme activities.The present study explores the development of ...Microbial population and enzyme activities are the significant indicators of soil strength.Soil microbial dynamics characterize microbial population and enzyme activities.The present study explores the development of efficient predictive modeling systems for the estimation of specific soil microbial dynamics,like rock phosphate solubilization,bacterial population,and ACC-deaminase activity.More specifically,optimized subtractive clustering(SC)and Wang and Mendel's(WM)fuzzy inference systems(FIS)have been implemented with the objective to achieve the best estimation accuracy of microbial dynamics.Experimental measurements were performed using controlled pot experiment using minimal salt media with rock phosphate as sole carbon source inoculated with phosphate solubilizing microorganism in order to estimate rock phosphate solubilization potential of selected strains.Three experimental parameters,including temperature,pH,and incubation period have been used as inputs SC-FIS and WM-FIS.The better performance of the SC-FIS has been observed as compared to the WM-FIS in the estimation of phosphate solubilization and bacterial population with the maximum value of the coefficient of determination(0.9988)2 R=in the estimation of previous microbial dynamics.展开更多
Inland freshwater lake wetlands play an important role in regional ecological balance. Hongze Lake is the fourth biggest freshwater lake in China. In the past three decades, there has been significant loss of freshwat...Inland freshwater lake wetlands play an important role in regional ecological balance. Hongze Lake is the fourth biggest freshwater lake in China. In the past three decades, there has been significant loss of freshwater wet- lands within the lake and at the mouths of neighboring rivers, due to disturbance, primarily from human activities. The main purpose of this paper was to explore a practical technology for differentiating wetlands effectively from upland types in close proximity to them. In the paper, an integrated method, which combined per-pixel and per-field classifi- cation, was used for mapping wetlands of Hongze Lake and their neighboring upland types. Firstly, Landsat ETM+ imagery was segmented and classified by using spectral and textural features. Secondly, ETM+ spectral bands, textural features derived from ETM+ Pan imagery, relative relations between neighboring classes, shape fea^xes, and elevation were used in a decision tree classification. Thirdly, per-pixel classification results from the decision tree classifier were improved by using classification results from object-oriented classification as a context. The results show that the technology has not only overcome the salt-and-pepper effect commonly observed in the past studies, but also has im- proved the accuracy of identification by nearly 5%.展开更多
Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly ...Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly to substitute petroleum-based products.They are a definite class of sustainable materials of the forestry industry.They have been in operation for hundreds of years to manufacture leather and now for a growing number of applications in a variety of other industries,such as wood adhesives,metal coating,pharmaceutical/medical applications and several others.This review presents the main sources,either already or potentially commercial of this forestry by-materials,their industrial and laboratory extraction systems,their systems of analysis with their advantages and drawbacks,be these methods so simple to even appear primitive but nonetheless of proven effectiveness,or very modern and instrumental.It constitutes a basic but essential summary of what is necessary to know of these sustainable materials.In doing so,the review highlights some of the main challenges that remain to be addressed to deliver the quality and economics of tannin supply necessary to fulfill the industrial production requirements for some materials-based uses.展开更多
Train traffic rescheduling is a complicated and large-scaled combinatorial problem. According to the characteristics of China railway system and from the point of practical use, this paper introduces a rule-based trai...Train traffic rescheduling is a complicated and large-scaled combinatorial problem. According to the characteristics of China railway system and from the point of practical use, this paper introduces a rule-based train traffic reschedule interactive simulator. It can be used as a powerful training tool to train the dispatcher and to carry out experimental analysis. The production rules are used as the basic for describing the processes to be simulated. With the increase of rule, users can easily upgrade the simulator by adding their own rules.展开更多
For improving the translation quality of transfer-based MT system,a new metric for rule evaluation was proposed and applied to rule-base optimization.At the same time,a frequency filter was used to delete redundance b...For improving the translation quality of transfer-based MT system,a new metric for rule evaluation was proposed and applied to rule-base optimization.At the same time,a frequency filter was used to delete redundance before new acquired rules were added into rule-base.The new optimization method was applied to a general MT system.Experimental results show that the frequency filter is helpful to provide the knowledge expansion space of MT system for new acquired rules.The translation assessment score of open test corpus (including 2500 Chinese sentences) obtained is increased by 3.58% under 5-gram Nist metric,which is two times of that obtained by previous methods.展开更多
Identity verification using authenticity evaluation of handwritten signatures is an important issue.There have been several approaches for the verification of signatures using dynamics of the signing process.Most of t...Identity verification using authenticity evaluation of handwritten signatures is an important issue.There have been several approaches for the verification of signatures using dynamics of the signing process.Most of these approaches extract only global characteristics.With the aim of capturing both dynamic global and local features,this paper introduces a novel model for verifying handwritten dynamic signatures using neutrosophic rule-based verification system(NRVS)and Genetic NRVS(GNRVS)models.The neutrosophic Logic is structured to reflect multiple types of knowledge and relations among all features using three values:truth,indeterminacy,and falsity.These three values are determined by neutrosophic membership functions.The proposed model also is able to deal with all features without the need to select from them.In the GNRVS model,the neutrosophic rules are automatically chosen by Genetic Algorithms.The performance of the proposed system is tested on the MCYT-Signature-100 dataset.In terms of the accuracy,average error rate,false acceptance rate,and false rejection rate,the experimental results indicate that the proposed model has a significant advantage compared to different well-known models.展开更多
In the field of sentiment analysis,extracting aspects or opinion targets fromuser reviews about a product is a key task.Extracting the polarity of an opinion is much more useful if we also know the targeted Aspect or ...In the field of sentiment analysis,extracting aspects or opinion targets fromuser reviews about a product is a key task.Extracting the polarity of an opinion is much more useful if we also know the targeted Aspect or Feature.Rule based approaches,like dependency-based rules,are quite popular and effective for this purpose.However,they are heavily dependent on the authenticity of the employed parts-of-speech(POS)tagger and dependency parser.Another popular rule based approach is to use sequential rules,wherein the rules formulated by learning from the user’s behavior.However,in general,the sequential rule-based approaches have poor generalization capability.Moreover,existing approaches mostly consider an aspect as a noun or noun phrase,so these approaches are unable to extract verb aspects.In this article,we have proposed a multi-layered rule-based(ML-RB)technique using the syntactic dependency parser based rules along with some selective sequential rules in separate layers to extract noun aspects.Additionally,after rigorous analysis,we have also constructed rules for the extraction of verb aspects.These verb rules primarily based on the association between verb and opinion words.The proposed multi-layer technique compensates for the weaknesses of individual layers and yields improved results on two publicly available customer review datasets.The F1 score for both the datasets are 0.90 and 0.88,respectively,which are better than existing approaches.These improved results can be attributed to the application of sequential/syntactic rules in a layered manner as well as the capability to extract both noun and verb aspects.展开更多
This paper firstly proposes a new support vector machine regression (SVR) with a robust loss function, and designs a gradient based algorithm for implementation of the SVR, then uses the SVR to extract fuzzy rules and...This paper firstly proposes a new support vector machine regression (SVR) with a robust loss function, and designs a gradient based algorithm for implementation of the SVR, then uses the SVR to extract fuzzy rules and designs fuzzy rule-based system. Simulations show that fuzzy rule-based system technique based on robust SVR achieves superior performance to the conventional fuzzy inference method, the proposed method provides satisfactory performance with excellent approximation and generalization property than the existing algorithm.展开更多
The Wireless Sensor Networks(WSN)are vulnerable to assaults due to the fact that the devices connected to them have a reliable connection to the inter-net.A malicious node acts as the controller and uses a grey hole a...The Wireless Sensor Networks(WSN)are vulnerable to assaults due to the fact that the devices connected to them have a reliable connection to the inter-net.A malicious node acts as the controller and uses a grey hole attack to get the data from all of the other nodes in the network.Additionally,the nodes are dis-carding and modifying the data packets according to the requirements of the sys-tem.The assault modifies the fundamental concept of the WSNs,which is that different devices should communicate with one another.In the proposed system,there is a fuzzy idea offered for the purpose of preventing the grey hole attack from making effective communication among the WSN devices.The currently available model is unable to recognise the myriad of different kinds of attacks.The fuzzy engine identified suspicious actions by utilising the rules that were gen-erated to make a prediction about the malicious node that would halt the process.Experiments conducted using simulation are used to determine delay,accuracy,energy consumption,throughput,and the ratio of packets successfully delivered.It stands in contrast to the model that was suggested,as well as the methodologies that are currently being used,and analogue behavioural modelling.In comparison to the existing method,the proposed model achieves an accuracy rate of 45 per-cent,a packet delivery ratio of 79 percent,and a reduction in energy usage of around 35.6 percent.These results from the simulation demonstrate that the fuzzy grey detection technique that was presented has the potential to increase the net-work’s capability of detecting grey hole assaults.展开更多
The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(R...The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(RCZ) is built. The formula for an ultimate cutting force is established based on the limit equilibrium principle. The relationship between digital drilling parameters(DDP) and the c-φ parameter(DDP-cφ formula, where c refers to the cohesion and φ refers to the internal friction angle) is derived, and the response of drilling parameters and cutting ratio to the strength parameters is analyzed. The drillingbased measuring method for the c-φ parameter of rock is constructed. The laboratory verification test is then completed, and the difference in results between the drilling test and the compression test is less than 6%. On this basis, in-situ rock drilling tests in a traffic tunnel and a coal mine roadway are carried out, and the strength parameters of the surrounding rock are effectively tested. The average difference ratio of the results is less than 11%, which verifies the effectiveness of the proposed method for obtaining the strength parameters based on digital drilling. This study provides methodological support for field testing of rock strength parameters.展开更多
Project-based learning has been in widespread use in education. However, project managers are unaware of the students’ lack of experience and treat them as if they were professional staff. This paper proposes the app...Project-based learning has been in widespread use in education. However, project managers are unaware of the students’ lack of experience and treat them as if they were professional staff. This paper proposes the application of a fuzzy failure mode and effects analysis model for project-based software engineering education. This method integrates the fuzzy rule-based system with learning agents. The agents construct the membership function from historical data. Data are processed by a clustering process that facilitates the construction of the membership function. It helps students who lack experience in risk assessment to develop their expertise in that skill. The paper also suggests a classification technique for a fuzzy rule-based system that can be used to judge risk based on a fuzzy inference system. The student project will thus be further enhanced with respect to risk assessment. We then discuss the design of experiments to verify the proposed model.展开更多
In this study,the structural characters,antioxidant activities and bile acid-binding ability of sea buckthorn polysaccharides(HRPs)obtained by the commonly used hot water(HRP-W),pressurized hot water(HRP-H),ultrasonic...In this study,the structural characters,antioxidant activities and bile acid-binding ability of sea buckthorn polysaccharides(HRPs)obtained by the commonly used hot water(HRP-W),pressurized hot water(HRP-H),ultrasonic(HRP-U),acid(HRP-C)and alkali(HRP-A)assisted extraction methods were investigated.The results demonstrated that extraction methods had significant effects on extraction yield,monosaccharide composition,molecular weight,particle size,triple-helical structure,and surface morphology of HRPs except for the major linkage bands.Thermogravimetric analysis showed that HRP-U with filamentous reticular microstructure exhibited better thermal stability.The HRP-A with the lowest molecular weight and highest arabinose content possessed the best antioxidant activities.Moreover,the rheological analysis indicated that HRPs with higher galacturonic acid content and molecular weight showed higher viscosity and stronger crosslinking network(HRP-C,HRP-W and HRP-U),which exhibited stronger bile acid binding capacity.The present findings provide scientific evidence in the preparation technology of sea buckthorn polysaccharides with good antioxidant and bile acid binding capacity which are related to the structure affected by the extraction methods.展开更多
As rule-based systems (RBS) technology gains wider acceptance, the need to create and maintain large knowledge bases will assume greater importance. Demonstrating a rule base to be free from error remains one of the o...As rule-based systems (RBS) technology gains wider acceptance, the need to create and maintain large knowledge bases will assume greater importance. Demonstrating a rule base to be free from error remains one of the obstacles to the adoption of this technology. In the past several years, a vast body of research has been carried out in developing various graphical techniques such as utilizing Petri Nets to analyze structural errors in rule-based systems, which utilize propositional logic. Four typical errors in rule-based systems are redundancy, circularity, incompleteness, and inconsistency. Recently, a DNA-based computing approach to detect these errors has been proposed. That paper presents algorithms which are able to detect structural errors just for special cases. For a rule base, which contains multiple starting nodes and goal nodes, structural errors are not removed correctly by utilizing the algorithms proposed in that paper and algorithms lack generality. In this study algorithms mainly based on Adleman’s operations, which are able to detect structural errors, in any form that they may arise in rule base, are presented. The potential of applying our algorithm is auspicious giving the operational time complexity of O(n*(Max{q, K, z})), in which n is the number of fact clauses;q is the number of rules in the longest inference chain;K is the number of tubes containing antecedents which are comprised of distinct number of starting nodes;and z denotes the maximum number of distinct antecedents comprised of the same number of starting nodes.展开更多
The material point method(MPM)has been gaining increasing popularity as an appropriate approach to the solution of coupled hydro-mechanical problems involving large deformation.In this paper,we survey the current stat...The material point method(MPM)has been gaining increasing popularity as an appropriate approach to the solution of coupled hydro-mechanical problems involving large deformation.In this paper,we survey the current state-of-the-art in the MPM simulation of hydro-mechanical behaviour in two-phase porous geomaterials.The review covers the recent advances and developments in the MPM and their extensions to capture the coupled hydro-mechanical problems involving large deformations.The focus of this review is aiming at providing a clear picture of what has or has not been developed or implemented for simulating two-phase coupled large deformation problems,which will provide some direct reference for both practitioners and researchers.展开更多
Gastric cancer(GC), the fifth most common cancer globally, remains the leading cause of cancer deaths worldwide. Inflammation-induced tumorigenesis is the predominant process in GC development;therefore, systematic re...Gastric cancer(GC), the fifth most common cancer globally, remains the leading cause of cancer deaths worldwide. Inflammation-induced tumorigenesis is the predominant process in GC development;therefore, systematic research in this area should improve understanding of the biological mechanisms that initiate GC development and promote cancer hallmarks. Here, we summarize biological knowledge regarding gastric inflammation-induced tumorigenesis, and characterize the multi-omics data and systems biology methods for investigating GC development. Of note, we highlight pioneering studies in multi-omics data and state-of-the-art network-based algorithms used for dissecting the features of gastric inflammation-induced tumorigenesis, and we propose translational applications in early GC warning biomarkers and precise treatment strategies. This review offers integrative insights for GC research, with the goal of paving the way to novel paradigms for GC precision oncology and prevention.展开更多
Porous materials present significant advantages for absorbing radioactive isotopes in nuclear waste streams.To improve absorption efficiency in nuclear waste treatment,a thorough understanding of the diffusion-advecti...Porous materials present significant advantages for absorbing radioactive isotopes in nuclear waste streams.To improve absorption efficiency in nuclear waste treatment,a thorough understanding of the diffusion-advection process within porous structures is essential for material design.In this study,we present advancements in the volumetric lattice Boltzmann method(VLBM)for modeling and simulating pore-scale diffusion-advection of radioactive isotopes within geopolymer porous structures.These structures are created using the phase field method(PFM)to precisely control pore architectures.In our VLBM approach,we introduce a concentration field of an isotope seamlessly coupled with the velocity field and solve it by the time evolution of its particle population function.To address the computational intensity inherent in the coupled lattice Boltzmann equations for velocity and concentration fields,we implement graphics processing unit(GPU)parallelization.Validation of the developed model involves examining the flow and diffusion fields in porous structures.Remarkably,good agreement is observed for both the velocity field from VLBM and multiphysics object-oriented simulation environment(MOOSE),and the concentration field from VLBM and the finite difference method(FDM).Furthermore,we investigate the effects of background flow,species diffusivity,and porosity on the diffusion-advection behavior by varying the background flow velocity,diffusion coefficient,and pore volume fraction,respectively.Notably,all three parameters exert an influence on the diffusion-advection process.Increased background flow and diffusivity markedly accelerate the process due to increased advection intensity and enhanced diffusion capability,respectively.Conversely,increasing the porosity has a less significant effect,causing a slight slowdown of the diffusion-advection process due to the expanded pore volume.This comprehensive parametric study provides valuable insights into the kinetics of isotope uptake in porous structures,facilitating the development of porous materials for nuclear waste treatment applications.展开更多
In the existing landslide susceptibility prediction(LSP)models,the influences of random errors in landslide conditioning factors on LSP are not considered,instead the original conditioning factors are directly taken a...In the existing landslide susceptibility prediction(LSP)models,the influences of random errors in landslide conditioning factors on LSP are not considered,instead the original conditioning factors are directly taken as the model inputs,which brings uncertainties to LSP results.This study aims to reveal the influence rules of the different proportional random errors in conditioning factors on the LSP un-certainties,and further explore a method which can effectively reduce the random errors in conditioning factors.The original conditioning factors are firstly used to construct original factors-based LSP models,and then different random errors of 5%,10%,15% and 20%are added to these original factors for con-structing relevant errors-based LSP models.Secondly,low-pass filter-based LSP models are constructed by eliminating the random errors using low-pass filter method.Thirdly,the Ruijin County of China with 370 landslides and 16 conditioning factors are used as study case.Three typical machine learning models,i.e.multilayer perceptron(MLP),support vector machine(SVM)and random forest(RF),are selected as LSP models.Finally,the LSP uncertainties are discussed and results show that:(1)The low-pass filter can effectively reduce the random errors in conditioning factors to decrease the LSP uncertainties.(2)With the proportions of random errors increasing from 5%to 20%,the LSP uncertainty increases continuously.(3)The original factors-based models are feasible for LSP in the absence of more accurate conditioning factors.(4)The influence degrees of two uncertainty issues,machine learning models and different proportions of random errors,on the LSP modeling are large and basically the same.(5)The Shapley values effectively explain the internal mechanism of machine learning model predicting landslide sus-ceptibility.In conclusion,greater proportion of random errors in conditioning factors results in higher LSP uncertainty,and low-pass filter can effectively reduce these random errors.展开更多
When investigating the vortex-induced vibration(VIV)of marine risers,extrapolating the dynamic response on the entire length based on limited sensor measurements is a crucial step in both laboratory experiments and fa...When investigating the vortex-induced vibration(VIV)of marine risers,extrapolating the dynamic response on the entire length based on limited sensor measurements is a crucial step in both laboratory experiments and fatigue monitoring of real risers.The problem is conventionally solved using the modal decomposition method,based on the principle that the response can be approximated by a weighted sum of limited vibration modes.However,the method is not valid when the problem is underdetermined,i.e.,the number of unknown mode weights is more than the number of known measurements.This study proposed a sparse modal decomposition method based on the compressed sensing theory and the Compressive Sampling Matching Pursuit(Co Sa MP)algorithm,exploiting the sparsity of VIV in the modal space.In the validation study based on high-order VIV experiment data,the proposed method successfully reconstructed the response using only seven acceleration measurements when the conventional methods failed.A primary advantage of the proposed method is that it offers a completely data-driven approach for the underdetermined VIV reconstruction problem,which is more favorable than existing model-dependent solutions for many practical applications such as riser structural health monitoring.展开更多
文摘Despite the presence of various construction project cost estimate softwares, human experience and knowledge cannot be disregarded. This fact has been proven in practice, where the success of construction cost estimate process is mainly based on knowledge of human estimator. The main question concerns what human knowledge determines the success of the construction cost estimation process. To address this question we have applied Delphi technique and the output is eleven factors that are enough to precisely represent construction cost estimator knowledge. Then we have used First Order Logic (FOL) to represent these factors in terms of predicates and rules. These FOL rules could be used for evaluating construction cost estimator knowledge in five classes: fail, pass, acceptable, good, and very good. As a validation process we have done experiments using history data and the results have proved the accuracy of our proposed method.
基金supported by National Natural Science Foundation of China(Grant No. 51275264)National Hi-tech Research and Development Program of China(863 Program, Grant No. 2011AA11A269)
文摘Hall sensor is widely used for estimating rotor phase of permanent magnet synchronous motor(PMSM). And rotor position is an essential parameter of PMSM control algorithm, hence it is very dangerous if Hall senor faults occur. But there is scarcely any research focusing on fault diagnosis and fault-tolerant control of Hall sensor used in PMSM. From this standpoint, the Hall sensor faults which may occur during the PMSM operating are theoretically analyzed. According to the analysis results, the fault diagnosis algorithm of Hall sensor, which is based on three rules, is proposed to classify the fault phenomena accurately. The rotor phase estimation algorithms, based on one or two Hall sensor(s), are initialized to engender the fault-tolerant control algorithm. The fault diagnosis algorithm can detect 60 Hall fault phenomena in total as well as all detections can be fulfilled in 1/138 rotor rotation period. The fault-tolerant control algorithm can achieve a smooth torque production which means the same control effect as normal control mode (with three Hall sensors). Finally, the PMSM bench test verifies the accuracy and rapidity of fault diagnosis and fault-tolerant control strategies. The fault diagnosis algorithm can detect all Hall sensor faults promptly and fault-tolerant control algorithm allows the PMSM to face failure conditions of one or two Hall sensor(s). In addition, the transitions between health-control and fault-tolerant control conditions are smooth without any additional noise and harshness. Proposed algorithms can deal with the Hall sensor faults of PMSM in real applications, and can be provided to realize the fault diagnosis and fault-tolerant control of PMSM.
文摘Microbial population and enzyme activities are the significant indicators of soil strength.Soil microbial dynamics characterize microbial population and enzyme activities.The present study explores the development of efficient predictive modeling systems for the estimation of specific soil microbial dynamics,like rock phosphate solubilization,bacterial population,and ACC-deaminase activity.More specifically,optimized subtractive clustering(SC)and Wang and Mendel's(WM)fuzzy inference systems(FIS)have been implemented with the objective to achieve the best estimation accuracy of microbial dynamics.Experimental measurements were performed using controlled pot experiment using minimal salt media with rock phosphate as sole carbon source inoculated with phosphate solubilizing microorganism in order to estimate rock phosphate solubilization potential of selected strains.Three experimental parameters,including temperature,pH,and incubation period have been used as inputs SC-FIS and WM-FIS.The better performance of the SC-FIS has been observed as compared to the WM-FIS in the estimation of phosphate solubilization and bacterial population with the maximum value of the coefficient of determination(0.9988)2 R=in the estimation of previous microbial dynamics.
基金Under the auspices of Natural Science Foundation of Jiangsu Province (No. BK2008360)Foundamental Research Funds for the Central Universities (No. 2009B12714,2009B11714)
文摘Inland freshwater lake wetlands play an important role in regional ecological balance. Hongze Lake is the fourth biggest freshwater lake in China. In the past three decades, there has been significant loss of freshwater wet- lands within the lake and at the mouths of neighboring rivers, due to disturbance, primarily from human activities. The main purpose of this paper was to explore a practical technology for differentiating wetlands effectively from upland types in close proximity to them. In the paper, an integrated method, which combined per-pixel and per-field classifi- cation, was used for mapping wetlands of Hongze Lake and their neighboring upland types. Firstly, Landsat ETM+ imagery was segmented and classified by using spectral and textural features. Secondly, ETM+ spectral bands, textural features derived from ETM+ Pan imagery, relative relations between neighboring classes, shape fea^xes, and elevation were used in a decision tree classification. Thirdly, per-pixel classification results from the decision tree classifier were improved by using classification results from object-oriented classification as a context. The results show that the technology has not only overcome the salt-and-pepper effect commonly observed in the past studies, but also has im- proved the accuracy of identification by nearly 5%.
文摘Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly to substitute petroleum-based products.They are a definite class of sustainable materials of the forestry industry.They have been in operation for hundreds of years to manufacture leather and now for a growing number of applications in a variety of other industries,such as wood adhesives,metal coating,pharmaceutical/medical applications and several others.This review presents the main sources,either already or potentially commercial of this forestry by-materials,their industrial and laboratory extraction systems,their systems of analysis with their advantages and drawbacks,be these methods so simple to even appear primitive but nonetheless of proven effectiveness,or very modern and instrumental.It constitutes a basic but essential summary of what is necessary to know of these sustainable materials.In doing so,the review highlights some of the main challenges that remain to be addressed to deliver the quality and economics of tannin supply necessary to fulfill the industrial production requirements for some materials-based uses.
文摘Train traffic rescheduling is a complicated and large-scaled combinatorial problem. According to the characteristics of China railway system and from the point of practical use, this paper introduces a rule-based train traffic reschedule interactive simulator. It can be used as a powerful training tool to train the dispatcher and to carry out experimental analysis. The production rules are used as the basic for describing the processes to be simulated. With the increase of rule, users can easily upgrade the simulator by adding their own rules.
基金Sponsored by the High Technology Research and Development Program of China (Grant No.2002AA117010-09)the National Natural Science Foun-dation of China (Grant No. 60375019)
文摘For improving the translation quality of transfer-based MT system,a new metric for rule evaluation was proposed and applied to rule-base optimization.At the same time,a frequency filter was used to delete redundance before new acquired rules were added into rule-base.The new optimization method was applied to a general MT system.Experimental results show that the frequency filter is helpful to provide the knowledge expansion space of MT system for new acquired rules.The translation assessment score of open test corpus (including 2500 Chinese sentences) obtained is increased by 3.58% under 5-gram Nist metric,which is two times of that obtained by previous methods.
文摘Identity verification using authenticity evaluation of handwritten signatures is an important issue.There have been several approaches for the verification of signatures using dynamics of the signing process.Most of these approaches extract only global characteristics.With the aim of capturing both dynamic global and local features,this paper introduces a novel model for verifying handwritten dynamic signatures using neutrosophic rule-based verification system(NRVS)and Genetic NRVS(GNRVS)models.The neutrosophic Logic is structured to reflect multiple types of knowledge and relations among all features using three values:truth,indeterminacy,and falsity.These three values are determined by neutrosophic membership functions.The proposed model also is able to deal with all features without the need to select from them.In the GNRVS model,the neutrosophic rules are automatically chosen by Genetic Algorithms.The performance of the proposed system is tested on the MCYT-Signature-100 dataset.In terms of the accuracy,average error rate,false acceptance rate,and false rejection rate,the experimental results indicate that the proposed model has a significant advantage compared to different well-known models.
文摘In the field of sentiment analysis,extracting aspects or opinion targets fromuser reviews about a product is a key task.Extracting the polarity of an opinion is much more useful if we also know the targeted Aspect or Feature.Rule based approaches,like dependency-based rules,are quite popular and effective for this purpose.However,they are heavily dependent on the authenticity of the employed parts-of-speech(POS)tagger and dependency parser.Another popular rule based approach is to use sequential rules,wherein the rules formulated by learning from the user’s behavior.However,in general,the sequential rule-based approaches have poor generalization capability.Moreover,existing approaches mostly consider an aspect as a noun or noun phrase,so these approaches are unable to extract verb aspects.In this article,we have proposed a multi-layered rule-based(ML-RB)technique using the syntactic dependency parser based rules along with some selective sequential rules in separate layers to extract noun aspects.Additionally,after rigorous analysis,we have also constructed rules for the extraction of verb aspects.These verb rules primarily based on the association between verb and opinion words.The proposed multi-layer technique compensates for the weaknesses of individual layers and yields improved results on two publicly available customer review datasets.The F1 score for both the datasets are 0.90 and 0.88,respectively,which are better than existing approaches.These improved results can be attributed to the application of sequential/syntactic rules in a layered manner as well as the capability to extract both noun and verb aspects.
基金Supported by Zhejiang Province Nature Science Fund (No.Y106259)
文摘This paper firstly proposes a new support vector machine regression (SVR) with a robust loss function, and designs a gradient based algorithm for implementation of the SVR, then uses the SVR to extract fuzzy rules and designs fuzzy rule-based system. Simulations show that fuzzy rule-based system technique based on robust SVR achieves superior performance to the conventional fuzzy inference method, the proposed method provides satisfactory performance with excellent approximation and generalization property than the existing algorithm.
文摘The Wireless Sensor Networks(WSN)are vulnerable to assaults due to the fact that the devices connected to them have a reliable connection to the inter-net.A malicious node acts as the controller and uses a grey hole attack to get the data from all of the other nodes in the network.Additionally,the nodes are dis-carding and modifying the data packets according to the requirements of the sys-tem.The assault modifies the fundamental concept of the WSNs,which is that different devices should communicate with one another.In the proposed system,there is a fuzzy idea offered for the purpose of preventing the grey hole attack from making effective communication among the WSN devices.The currently available model is unable to recognise the myriad of different kinds of attacks.The fuzzy engine identified suspicious actions by utilising the rules that were gen-erated to make a prediction about the malicious node that would halt the process.Experiments conducted using simulation are used to determine delay,accuracy,energy consumption,throughput,and the ratio of packets successfully delivered.It stands in contrast to the model that was suggested,as well as the methodologies that are currently being used,and analogue behavioural modelling.In comparison to the existing method,the proposed model achieves an accuracy rate of 45 per-cent,a packet delivery ratio of 79 percent,and a reduction in energy usage of around 35.6 percent.These results from the simulation demonstrate that the fuzzy grey detection technique that was presented has the potential to increase the net-work’s capability of detecting grey hole assaults.
基金supported by the National Key Research and Development Program of China(No.2023YFC2907600)the National Natural Science Foundation of China(Nos.42077267,42277174 and 52074164)+2 种基金the Natural Science Foundation of Shandong Province,China(No.ZR2020JQ23)the Opening Project of State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology(No.KFJJ21-02Z)the Fundamental Research Funds for the Central Universities,China(No.2022JCCXSB03).
文摘The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(RCZ) is built. The formula for an ultimate cutting force is established based on the limit equilibrium principle. The relationship between digital drilling parameters(DDP) and the c-φ parameter(DDP-cφ formula, where c refers to the cohesion and φ refers to the internal friction angle) is derived, and the response of drilling parameters and cutting ratio to the strength parameters is analyzed. The drillingbased measuring method for the c-φ parameter of rock is constructed. The laboratory verification test is then completed, and the difference in results between the drilling test and the compression test is less than 6%. On this basis, in-situ rock drilling tests in a traffic tunnel and a coal mine roadway are carried out, and the strength parameters of the surrounding rock are effectively tested. The average difference ratio of the results is less than 11%, which verifies the effectiveness of the proposed method for obtaining the strength parameters based on digital drilling. This study provides methodological support for field testing of rock strength parameters.
文摘Project-based learning has been in widespread use in education. However, project managers are unaware of the students’ lack of experience and treat them as if they were professional staff. This paper proposes the application of a fuzzy failure mode and effects analysis model for project-based software engineering education. This method integrates the fuzzy rule-based system with learning agents. The agents construct the membership function from historical data. Data are processed by a clustering process that facilitates the construction of the membership function. It helps students who lack experience in risk assessment to develop their expertise in that skill. The paper also suggests a classification technique for a fuzzy rule-based system that can be used to judge risk based on a fuzzy inference system. The student project will thus be further enhanced with respect to risk assessment. We then discuss the design of experiments to verify the proposed model.
基金The Guangdong Basic and Applied Basic Research Foundation(2022A1515010730)National Natural Science Foundation of China(32001647)+2 种基金National Natural Science Foundation of China(31972022)Financial and moral assistance supported by the Guangdong Basic and Applied Basic Research Foundation(2019A1515011996)111 Project(B17018)。
文摘In this study,the structural characters,antioxidant activities and bile acid-binding ability of sea buckthorn polysaccharides(HRPs)obtained by the commonly used hot water(HRP-W),pressurized hot water(HRP-H),ultrasonic(HRP-U),acid(HRP-C)and alkali(HRP-A)assisted extraction methods were investigated.The results demonstrated that extraction methods had significant effects on extraction yield,monosaccharide composition,molecular weight,particle size,triple-helical structure,and surface morphology of HRPs except for the major linkage bands.Thermogravimetric analysis showed that HRP-U with filamentous reticular microstructure exhibited better thermal stability.The HRP-A with the lowest molecular weight and highest arabinose content possessed the best antioxidant activities.Moreover,the rheological analysis indicated that HRPs with higher galacturonic acid content and molecular weight showed higher viscosity and stronger crosslinking network(HRP-C,HRP-W and HRP-U),which exhibited stronger bile acid binding capacity.The present findings provide scientific evidence in the preparation technology of sea buckthorn polysaccharides with good antioxidant and bile acid binding capacity which are related to the structure affected by the extraction methods.
文摘As rule-based systems (RBS) technology gains wider acceptance, the need to create and maintain large knowledge bases will assume greater importance. Demonstrating a rule base to be free from error remains one of the obstacles to the adoption of this technology. In the past several years, a vast body of research has been carried out in developing various graphical techniques such as utilizing Petri Nets to analyze structural errors in rule-based systems, which utilize propositional logic. Four typical errors in rule-based systems are redundancy, circularity, incompleteness, and inconsistency. Recently, a DNA-based computing approach to detect these errors has been proposed. That paper presents algorithms which are able to detect structural errors just for special cases. For a rule base, which contains multiple starting nodes and goal nodes, structural errors are not removed correctly by utilizing the algorithms proposed in that paper and algorithms lack generality. In this study algorithms mainly based on Adleman’s operations, which are able to detect structural errors, in any form that they may arise in rule base, are presented. The potential of applying our algorithm is auspicious giving the operational time complexity of O(n*(Max{q, K, z})), in which n is the number of fact clauses;q is the number of rules in the longest inference chain;K is the number of tubes containing antecedents which are comprised of distinct number of starting nodes;and z denotes the maximum number of distinct antecedents comprised of the same number of starting nodes.
基金The financial supports from National Outstanding Youth Science Fund Project of National Natural Science Foundation of China(Grant No.52022112)the International Postdoctoral Exchange Fellowship Program(Talent-Introduction Program,Grant No.YJ20220219)。
文摘The material point method(MPM)has been gaining increasing popularity as an appropriate approach to the solution of coupled hydro-mechanical problems involving large deformation.In this paper,we survey the current state-of-the-art in the MPM simulation of hydro-mechanical behaviour in two-phase porous geomaterials.The review covers the recent advances and developments in the MPM and their extensions to capture the coupled hydro-mechanical problems involving large deformations.The focus of this review is aiming at providing a clear picture of what has or has not been developed or implemented for simulating two-phase coupled large deformation problems,which will provide some direct reference for both practitioners and researchers.
基金supported by funds from the National Natural Science Foundation of China (Grant No. T2341008)。
文摘Gastric cancer(GC), the fifth most common cancer globally, remains the leading cause of cancer deaths worldwide. Inflammation-induced tumorigenesis is the predominant process in GC development;therefore, systematic research in this area should improve understanding of the biological mechanisms that initiate GC development and promote cancer hallmarks. Here, we summarize biological knowledge regarding gastric inflammation-induced tumorigenesis, and characterize the multi-omics data and systems biology methods for investigating GC development. Of note, we highlight pioneering studies in multi-omics data and state-of-the-art network-based algorithms used for dissecting the features of gastric inflammation-induced tumorigenesis, and we propose translational applications in early GC warning biomarkers and precise treatment strategies. This review offers integrative insights for GC research, with the goal of paving the way to novel paradigms for GC precision oncology and prevention.
基金supported as part of the Center for Hierarchical Waste Form Materials,an Energy Frontier Research Center funded by the U.S.Department of Energy,Office of Science,Basic Energy Sciences under Award No.DE-SC0016574.
文摘Porous materials present significant advantages for absorbing radioactive isotopes in nuclear waste streams.To improve absorption efficiency in nuclear waste treatment,a thorough understanding of the diffusion-advection process within porous structures is essential for material design.In this study,we present advancements in the volumetric lattice Boltzmann method(VLBM)for modeling and simulating pore-scale diffusion-advection of radioactive isotopes within geopolymer porous structures.These structures are created using the phase field method(PFM)to precisely control pore architectures.In our VLBM approach,we introduce a concentration field of an isotope seamlessly coupled with the velocity field and solve it by the time evolution of its particle population function.To address the computational intensity inherent in the coupled lattice Boltzmann equations for velocity and concentration fields,we implement graphics processing unit(GPU)parallelization.Validation of the developed model involves examining the flow and diffusion fields in porous structures.Remarkably,good agreement is observed for both the velocity field from VLBM and multiphysics object-oriented simulation environment(MOOSE),and the concentration field from VLBM and the finite difference method(FDM).Furthermore,we investigate the effects of background flow,species diffusivity,and porosity on the diffusion-advection behavior by varying the background flow velocity,diffusion coefficient,and pore volume fraction,respectively.Notably,all three parameters exert an influence on the diffusion-advection process.Increased background flow and diffusivity markedly accelerate the process due to increased advection intensity and enhanced diffusion capability,respectively.Conversely,increasing the porosity has a less significant effect,causing a slight slowdown of the diffusion-advection process due to the expanded pore volume.This comprehensive parametric study provides valuable insights into the kinetics of isotope uptake in porous structures,facilitating the development of porous materials for nuclear waste treatment applications.
基金This work is funded by the National Natural Science Foundation of China(Grant Nos.42377164 and 52079062)the National Science Fund for Distinguished Young Scholars of China(Grant No.52222905).
文摘In the existing landslide susceptibility prediction(LSP)models,the influences of random errors in landslide conditioning factors on LSP are not considered,instead the original conditioning factors are directly taken as the model inputs,which brings uncertainties to LSP results.This study aims to reveal the influence rules of the different proportional random errors in conditioning factors on the LSP un-certainties,and further explore a method which can effectively reduce the random errors in conditioning factors.The original conditioning factors are firstly used to construct original factors-based LSP models,and then different random errors of 5%,10%,15% and 20%are added to these original factors for con-structing relevant errors-based LSP models.Secondly,low-pass filter-based LSP models are constructed by eliminating the random errors using low-pass filter method.Thirdly,the Ruijin County of China with 370 landslides and 16 conditioning factors are used as study case.Three typical machine learning models,i.e.multilayer perceptron(MLP),support vector machine(SVM)and random forest(RF),are selected as LSP models.Finally,the LSP uncertainties are discussed and results show that:(1)The low-pass filter can effectively reduce the random errors in conditioning factors to decrease the LSP uncertainties.(2)With the proportions of random errors increasing from 5%to 20%,the LSP uncertainty increases continuously.(3)The original factors-based models are feasible for LSP in the absence of more accurate conditioning factors.(4)The influence degrees of two uncertainty issues,machine learning models and different proportions of random errors,on the LSP modeling are large and basically the same.(5)The Shapley values effectively explain the internal mechanism of machine learning model predicting landslide sus-ceptibility.In conclusion,greater proportion of random errors in conditioning factors results in higher LSP uncertainty,and low-pass filter can effectively reduce these random errors.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51109158,U2106223)the Science and Technology Development Plan Program of Tianjin Municipal Transportation Commission(Grant No.2022-48)。
文摘When investigating the vortex-induced vibration(VIV)of marine risers,extrapolating the dynamic response on the entire length based on limited sensor measurements is a crucial step in both laboratory experiments and fatigue monitoring of real risers.The problem is conventionally solved using the modal decomposition method,based on the principle that the response can be approximated by a weighted sum of limited vibration modes.However,the method is not valid when the problem is underdetermined,i.e.,the number of unknown mode weights is more than the number of known measurements.This study proposed a sparse modal decomposition method based on the compressed sensing theory and the Compressive Sampling Matching Pursuit(Co Sa MP)algorithm,exploiting the sparsity of VIV in the modal space.In the validation study based on high-order VIV experiment data,the proposed method successfully reconstructed the response using only seven acceleration measurements when the conventional methods failed.A primary advantage of the proposed method is that it offers a completely data-driven approach for the underdetermined VIV reconstruction problem,which is more favorable than existing model-dependent solutions for many practical applications such as riser structural health monitoring.