Exercise training is critical for the early prevention and treatment of obesity and diabetes mellitus.However,the mechanism with gut microbiota and fecal metabolites underlying the effects of voluntary wheel running o...Exercise training is critical for the early prevention and treatment of obesity and diabetes mellitus.However,the mechanism with gut microbiota and fecal metabolites underlying the effects of voluntary wheel running on high-fat diet induced abnormal glucose metabolism has not been fully elaborated.C57BL/6 male mice were randomly assigned to 4 groups according to diets(fed with normal chow diet or high-fat diet)and running paradigm(housed in static cage or with voluntary running wheel).An integrative 16S rDNA sequencing and metabolites profiling was synchronously performed to characterize the effects of voluntary wheel running on gut microbiota and metabolites.It showed that voluntary wheel running prevented the detrimental effects of high-fat feeding on glucose metabolism 16S rDNA sequencing showed remarkable changes in Rikenella and Marvinbryantia genera.Metabolic profiling indicated multiple altered metabolites,which were enriched in secondary bile acid biosynthesis signaling.In conclusion,our study indicated that voluntary wheel running significantly improved glucose metabolism and counteracted the deleterious effects of high-fat feeding on body weight and glucose intolerance.We further found that voluntary wheel running could integratively program gut microbiota composition and fecal metabolites changes,and may regulate muricholic acid metabolism and secondary bile acid biosynthesis in high-fat fed mice.展开更多
Background:Foot kinematics,such as excessive eversion and malalignment of the hindfoot,are believed to be associated with running-related injuries.The maj ority of studies to date show that different foot strike patte...Background:Foot kinematics,such as excessive eversion and malalignment of the hindfoot,are believed to be associated with running-related injuries.The maj ority of studies to date show that different foot strike patterns influence these specific foot and ankle kinematics.However,technical deficiencies in traditional motion capture approaches limit knowledge of in vivo joint kinematics with respect to rearfoot and forefoot strike patterns(RFS and FFS,respectively).This study uses a high-speed dual fluoroscopic imaging system(DFIS)to determine the effects of different foot strike patterns on 3D in vivo tibiotalar and subtalar joints kinematics.Methods:Fifteen healthy male recreational runners underwent foot computed tomography scanning for the construction of 3-dimensional models.A high-speed DFIS(100 Hz)was used to collect 6 degrees of freedom kinematics for participants’tibiotalar and subtalar joints when they adopted RFS and FFS in barefoot condition.Results:Compared with RFS,FFS exhibited greater internal rotation at 0%-20%of the stance phase in the tibiotalar joint.The peak internal rotation angle of the tibiotalar joint under FFS was greater than under RFS(p<0.001,Cohen’s d=0.92).RFS showed more dorsiflexion at 0%-20%of the stance phase in the tibiotalar joint than FFS.RFS also presented a larger anterior translation(p<0.001,Cohen’s d=1.28)in the subtalar joint at i nitial contact than FFS.Conclusion:Running with acute barefoot FFS increases the internal rotation of the tibiotalar joint in the early stance.The use of high-speed DFIS to quantify the movement of the tibiotalar and subtalar joint was critical to revealing the effects of RF S and FFS during running.展开更多
Running safety assessment and tracking irregularity parametric sensitivity analysis of high-speed maglev train-bridge system are of great concern,especially need perfect refinement models in which all properties can b...Running safety assessment and tracking irregularity parametric sensitivity analysis of high-speed maglev train-bridge system are of great concern,especially need perfect refinement models in which all properties can be well characterized based on various stochastic excitations.A three-dimensional refined spatial random vibration analysis model of high-speed maglev train-bridge coupled system is established in this paper,in which multi-source uncertainty excitation can be considered simultaneously,and the probability density evolution method(PDEM)is adopted to reveal the system-specific uncertainty dynamic characteristic.The motion equation of the maglev vehicle model is composed of multi-rigid bodies with a total 210-degrees of freedom for each vehicle,and a refined electromagnetic force-air gap model is used to account for the interaction and coupling effect between the moving train and track beam bridges,which are directly established by using finite element method.The model is proven to be applicable by comparing with Monte Carlo simulation.By applying the proposed stochastic framework to the high maglev line,the random dynamic responses of maglev vehicles running on the bridges are studied for running safety and stability assessment.Moreover,the effects of track irregularity wavelength range under different amplitude and running speeds on the coupled system are investigated.The results show that the augmentation of train speed will move backward the sensitive wavelength interval,and track irregularity amplitude influences the response remarkably in the sensitive interval.展开更多
This study presents the design of a modified attributed control chart based on a double sampling(DS)np chart applied in combination with generalized multiple dependent state(GMDS)sampling to monitor the mean life of t...This study presents the design of a modified attributed control chart based on a double sampling(DS)np chart applied in combination with generalized multiple dependent state(GMDS)sampling to monitor the mean life of the product based on the time truncated life test employing theWeibull distribution.The control chart developed supports the examination of the mean lifespan variation for a particular product in the process of manufacturing.Three control limit levels are used:the warning control limit,inner control limit,and outer control limit.Together,they enhance the capability for variation detection.A genetic algorithm can be used for optimization during the in-control process,whereby the optimal parameters can be established for the proposed control chart.The control chart performance is assessed using the average run length,while the influence of the model parameters upon the control chart solution is assessed via sensitivity analysis based on an orthogonal experimental design withmultiple linear regression.A comparative study was conducted based on the out-of-control average run length,in which the developed control chart offered greater sensitivity in the detection of process shifts while making use of smaller samples on average than is the case for existing control charts.Finally,to exhibit the utility of the developed control chart,this paper presents its application using simulated data with parameters drawn from the real set of data.展开更多
In order to convey complete meanings,there is a phenomenon in Chinese of using multiple running sentences.Xu Jingning(2023,p.66)states,“In communication,a complete expression of meaning often requires more than one c...In order to convey complete meanings,there is a phenomenon in Chinese of using multiple running sentences.Xu Jingning(2023,p.66)states,“In communication,a complete expression of meaning often requires more than one clause,which is common in human languages.”Domestic research on running sentences includes discussions on defining the concept and structural features of running sentences,sentence properties,sentence pattern classifications and their criteria,as well as issues related to translating running sentences into English.This article primarily focuses on scholarly research into the English translation of running sentences in China,highlighting recent achievements and identifying existing issues in the study of running sentence translation.However,by reviewing literature on the translation of running sentences,it is found that current research in the academic community on non-core running sentences is limited.Therefore,this paper proposes relevant strategies to address this issue.展开更多
Time flies like an arrow,and time lost never returns.In the past few years of my junior high school life,what impressed me most was running.At first,I didn’t like sports.I thought I was supposed to spend more time on...Time flies like an arrow,and time lost never returns.In the past few years of my junior high school life,what impressed me most was running.At first,I didn’t like sports.I thought I was supposed to spend more time on school work than on exercise.But gradually,I found that running was not only good for my health,but also helped me relieve stress.When I opened my arms and stretched my legs on the playground,I was like a deer running in the field,which made me get a sense of belonging.展开更多
Exposed to the natural light-dark cycle,24 h rhythms exist in behavioral and physiological processes of living beings.Interestingly,under constant darkness or constant light,living beings can maintain a robust endogen...Exposed to the natural light-dark cycle,24 h rhythms exist in behavioral and physiological processes of living beings.Interestingly,under constant darkness or constant light,living beings can maintain a robust endogenous rhythm with a free running period(FRP)close to 24 h.In mammals,the circadian rhythm is coordinated by a master clock located in the suprachiasmatic nucleus(SCN)of the brain,which is composed of about twenty thousand self-oscillating neurons.These SCN neurons form a heterogenous network to output a robust rhythm.Thus far,the exact network topology of the SCN neurons is unknown.In this article,we examine the effect of the SCN network structure on the FRP when exposed to constant light by a Poincare model.Four typical network structures are considered,including a nearest-neighbor coupled network,a Newman-Watts small world network,an Erd¨os-Renyi random network and a Barabasi-Albert(BA)scale free network.The results show that the FRP is longest in the BA network,because the BA network is characterized by the most heterogeneous structure among these four types of networks.These findings are not affected by the average node degree of the SCN network or the value of relaxation rate of the SCN neuronal oscillators.Our findings contribute to the understanding of how the network structure of the SCN neurons influences the FRP.展开更多
BACKGROUND Running is a hugely popular sport.Unfortunately,running-related injury(RRI)rates are high,particularly amongst amateur and recreational runners.Finding ways to reduce RRI rates and maximise comfort and perf...BACKGROUND Running is a hugely popular sport.Unfortunately,running-related injury(RRI)rates are high,particularly amongst amateur and recreational runners.Finding ways to reduce RRI rates and maximise comfort and performance for runners is important.Evidence regarding whether orthotics can successfully improve these parameters is limited and contradicting.Further research is required to provide runners with clearer guidance on the usefulness of orthotics.AIM To investigate the effect of Aetrex Orthotics on comfort,speed and RRI rates during recreational running.METHODS One hundred and six recreational runners were recruited on a voluntary basis via running clubs and social media pages and randomised into either the intervention or control group.Participants in the intervention group ran with Aetrex L700 Speed Orthotics inserted in their usual running shoes,whilst participants in the control group ran in their usual running shoes with no orthotics.The study ran for an 8-wk period.Participants provided data relating to running comfort,distance,and time during weeks 3-6.Participants provided data relating to any RRIs they sustained during all 8 wks.Running distance and time were used to calculate running speed in miles per hour(mph).For each outcome variable,95%confidence intervals and P values were calculated to assess the statistical significance between the groups.For comfort and speed data,univariate multi-level analysis was performed,and for outcome variables with significant between group differences,multi-level multivariate analysis was performed to evaluate any confounding effects of gender and age.RESULTS Ninety-four participants were included in the final analysis(drop-out rate=11%).Comfort and speed from 940 runs and 978 injury data reports were analysed.Participants who ran with orthotics reported,on average,speeds 0.30 mph faster(P=0.20)and comfort scores 1.27 points higher(P≤0.001)than participants who ran with no orthotics.They were also 2.22 times less likely to sustain an injury(P=0.08)than participants who ran with no orthotics.However,findings were only significant for comfort and not for speed or injury rates.Age and gender were found to be significant predictors of comfort.However,the improvements in comfort reported by participants who ran with orthotics were still significant after adjusting for age and gender.CONCLUSION This study found orthotics to improve comfort and speed and prevent RRIs whilst running.However,these findings were only statistically significant for comfort.展开更多
This study used the synthetic running correlation coefficient calculation method to calculate the running correlation coefficients between the daily sea ice concentration(SIC) and sea surface air temperature(SSAT) in ...This study used the synthetic running correlation coefficient calculation method to calculate the running correlation coefficients between the daily sea ice concentration(SIC) and sea surface air temperature(SSAT) in the Beaufort-Chukchi-East Siberian-Laptev Sea(BCEL Sea), Kara Sea and southern Chukchi Sea, with an aim to understand and measure the seasonally occurring changes in the Arctic climate system. The similarities and differences among these three regions were also discussed. There are periods in spring and autumn when the changes in SIC and SSAT are not synchronized, which is a result of the seasonally occurring variation in the climate system. These periods are referred to as transition periods. Spring transition periods can be found in all three regions, and the start and end dates of these periods have advancing trends. The multiyear average duration of the spring transition periods in the BCEL Sea, Kara Sea and southern Chukchi Sea is 74 days, 57 days and 34 days, respectively. In autumn, transition periods exist in only the southern Chukchi Sea, with a multiyear average duration of only 16 days. Moreover, in the Kara Sea, positive correlation events can be found in some years, which are caused by weather time scale processes.展开更多
A newly proposed competent population-based optimization algorithm called RUN,which uses the principle of slope variations calculated by applying the Runge Kutta method as the key search mechanism,has gained wider int...A newly proposed competent population-based optimization algorithm called RUN,which uses the principle of slope variations calculated by applying the Runge Kutta method as the key search mechanism,has gained wider interest in solving optimization problems.However,in high-dimensional problems,the search capabilities,convergence speed,and runtime of RUN deteriorate.This work aims at filling this gap by proposing an improved variant of the RUN algorithm called the Adaptive-RUN.Population size plays a vital role in both runtime efficiency and optimization effectiveness of metaheuristic algorithms.Unlike the original RUN where population size is fixed throughout the search process,Adaptive-RUN automatically adjusts population size according to two population size adaptation techniques,which are linear staircase reduction and iterative halving,during the search process to achieve a good balance between exploration and exploitation characteristics.In addition,the proposed methodology employs an adaptive search step size technique to determine a better solution in the early stages of evolution to improve the solution quality,fitness,and convergence speed of the original RUN.Adaptive-RUN performance is analyzed over 23 IEEE CEC-2017 benchmark functions for two cases,where the first one applies linear staircase reduction with adaptive search step size(LSRUN),and the second one applies iterative halving with adaptive search step size(HRUN),with the original RUN.To promote green computing,the carbon footprint metric is included in the performance evaluation in addition to runtime and fitness.Simulation results based on the Friedman andWilcoxon tests revealed that Adaptive-RUN can produce high-quality solutions with lower runtime and carbon footprint values as compared to the original RUN and three recent metaheuristics.Therefore,with its higher computation efficiency,Adaptive-RUN is a much more favorable choice as compared to RUN in time stringent applications.展开更多
The Extended Exponentially Weighted Moving Average(extended EWMA)control chart is one of the control charts and can be used to quickly detect a small shift.The performance of control charts can be evaluated with the a...The Extended Exponentially Weighted Moving Average(extended EWMA)control chart is one of the control charts and can be used to quickly detect a small shift.The performance of control charts can be evaluated with the average run length(ARL).Due to the deriving explicit formulas for the ARL on a two-sided extended EWMA control chart for trend autoregressive or trend AR(p)model has not been reported previously.The aim of this study is to derive the explicit formulas for the ARL on a two-sided extended EWMA con-trol chart for the trend AR(p)model as well as the trend AR(1)and trend AR(2)models with exponential white noise.The analytical solution accuracy was obtained with the extended EWMA control chart and was compared to the numer-ical integral equation(NIE)method.The results show that the ARL obtained by the explicit formula and the NIE method is hardly different,but the explicit for-mula can help decrease the computational(CPU)time.Furthermore,this is also expanded to comparative performance with the Exponentially Weighted Moving Average(EWMA)control chart.The performance of the extended EWMA control chart is better than the EWMA control chart for all situations,both the trend AR(1)and trend AR(2)models.Finally,the analytical solution of ARL is applied to real-world data in the healthfield,such as COVID-19 data in the United Kingdom and Sweden,to demonstrate the efficacy of the proposed method.展开更多
The upgrading of diesel oil to produce ethylene rich cracking feedstock is an important and promising technical route to reduce the ratio of diesel to gasoline. In the present work, a hydrocracking catalyst suitable f...The upgrading of diesel oil to produce ethylene rich cracking feedstock is an important and promising technical route to reduce the ratio of diesel to gasoline. In the present work, a hydrocracking catalyst suitable for selective hydrocracking of straight run diesel oil to produce high-quality ethylene cracking feedstock at low cost was developed, by optimizing the composition of catalyst support materials, using amorphous silicon aluminum and aluminum oxide with high mesopore content as the main support, and modified Y zeolite with excellent aromatic ring opening selectivity as the acidic component. The catalyst has in-depth characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, N<sub>2</sub>-low temperature adsorption-desorption, NH<sub>3</sub>-temperature-programmed desorption, and IR techniques. And its catalytic cracking straight run diesel oil performance was evaluated. The results show that the prepared catalyst has high polycyclic aromatic hydrocarbon ring opening cracking selectivity. However, alkanes retained in diesel distillates can achieve the goal of producing more ethylene cracking feedstocks with low BMCI value under low and moderate pressure conditions. This work may shed significant technical insight for oil refining transformation.展开更多
In this note, we first derive an exponential generating function of the alternating run polynomials. We then deduce an explicit formula of the alternating run polynomials in terms of the partial Bell polynomials.
Global climate change has increased concerns regarding biodiversity loss.However,many key conservation issues still required further research,including demographic history,deleterious mutation load,adaptive evolution,...Global climate change has increased concerns regarding biodiversity loss.However,many key conservation issues still required further research,including demographic history,deleterious mutation load,adaptive evolution,and putative introgression.Here we generated the first chromosome-level genome of the endangered Chinese hazelnut,Corylus chinensis,and compared the genomic signatures with its sympatric widespread C.kwechowensis-C yunnanensis complex.We found large genome rearrangements across all Corylus species and identified species-specific expanded gene families that may be involved in adaptation.Population genomics revealed that both C.chinensis and the C.kwechowensis-C.yunnanensis complex had diverged into two genetic lineages,forming a consistent pattern of southwestern-northern differentiation.Population size of the narrow southwestern lineages of both species have decreased continuously since the late Miocene,whereas the widespread northern lineages have remained stable(C.chinensis) or have even recovered from population bottlenecks(C.kwechowensis-C.yunnanensis complex) during the Quaternary.Compared with C.kwechowensis-C. yunnanensis complex,C.chinensis showed significantly lower genomic diversity and higher inbreeding level.However,C.chinensis carried significantly fewer deleterious mutations than C.kwechowensis-C. yunnanensis complex,as more effective purging selection reduced the accumulation of homozygous variants.We also detected signals of positive selection and adaptive introgression in different lineages,which facilitated the accumulation of favorable variants and formation of local adaptation.Hence,both types of selection and exogenous introgression could have mitigated inbreeding and facilitated survival and persistence of C.chinensis.Overall,our study provides critical insights into lineage differentiation,local adaptation,and the potential for future recovery of endangered trees.展开更多
Sudden earthquakes pose a threat to the running safety of trains on high-speed railway bridges,and the stiffness of piers is one of the factors affecting the dynamic response of train-track-bridge system.In this paper...Sudden earthquakes pose a threat to the running safety of trains on high-speed railway bridges,and the stiffness of piers is one of the factors affecting the dynamic response of train-track-bridge system.In this paper,a experiment of a train running on a high-speed railway bridge is performed based on a dynamic experiment system,and the corresponding numerical model is established.The reliability of the numerical model is verified by experiments.Then,the experiment and numerical data are analyzed to reveal the pier height effects on the running safety of trains on bridges.The results show that when the pier height changes,the frequency of the bridge below the 30 m pier height changes greater;the increase of pier height causes the transverse fundamental frequency of the bridge close to that of the train,and the shaking angle and lateral displacement of the train are the largest for bridge with 50 m pier,which increases the risk of derailment;with the pier height increases from 8 m to 50 m,the derailment coefficient obtained by numerical simulations increases by 75% on average,and the spectral intensity obtained by experiments increases by 120% on average,two indicators exhibit logarithmic variation.展开更多
Spinal cord injury necessitates effective rehabilitation strategies, with exercise therapies showing promise in promoting recovery. This study investigated the impact of rehabilitation exercise on functional recovery ...Spinal cord injury necessitates effective rehabilitation strategies, with exercise therapies showing promise in promoting recovery. This study investigated the impact of rehabilitation exercise on functional recovery and morphological changes following thoracic contusive spinal cord injury. After a 7-day recovery period after spinal cord injury, mice were assigned to either a trained group(10 weeks of voluntary running wheel or forced treadmill exercise) or an untrained group. Bi-weekly assessments revealed that the exercise-trained group, particularly the voluntary wheel exercise subgroup, displayed significantly improved locomotor recovery, more plasticity of dopaminergic and serotonin modulation compared with the untrained group. Additionally, exercise interventions led to gait pattern restoration and enhanced transcranial magnetic motor-evoked potentials. Despite consistent injury areas across groups, exercise training promoted terminal innervation of descending axons. In summary, voluntary wheel exercise shows promise for enhancing outcomes after thoracic contusive spinal cord injury, emphasizing the role of exercise modality in promoting recovery and morphological changes in spinal cord injuries. Our findings will influence future strategies for rehabilitation exercises, restoring functional movement after spinal cord injury.展开更多
Intelligent electronic devices(IEDs)are interconnected via communication networks and play pivotal roles in transmitting grid-related operational data and executing control instructions.In the context of the heightene...Intelligent electronic devices(IEDs)are interconnected via communication networks and play pivotal roles in transmitting grid-related operational data and executing control instructions.In the context of the heightened security challenges within smart grids,IEDs pose significant risks due to inherent hardware and software vulner-abilities,as well as the openness and vulnerability of communication protocols.Smart grid security,distinct from traditional internet security,mainly relies on monitoring network security events at the platform layer,lacking an effective assessment mechanism for IEDs.Hence,we incorporate considerations for both cyber-attacks and physical faults,presenting security assessment indicators and methods specifically tailored for IEDs.Initially,we outline the security monitoring technology for IEDs,considering the necessary data sources for their security assessment.Subsequently,we classify IEDs and establish a comprehensive security monitoring index system,incorporating factors such as running states,network traffic,and abnormal behaviors.This index system contains 18 indicators in 3 categories.Additionally,we elucidate quantitative methods for various indicators and propose a hybrid security assessment method known as GRCW-hybrid,combining grey relational analysis(GRA),analytic hierarchy process(AHP),and entropy weight method(EWM).According to the proposed assessment method,the security risk level of IEDs can be graded into 6 levels,namely 0,1,2,3,4,and 5.The higher the level,the greater the security risk.Finally,we assess and simulate 15 scenarios in 3 categories,which are based on monitoring indicators and real-world situations encountered by IEDs.The results show that calculated security risk level based on the proposed assessment method are consistent with actual simulation.Thus,the reasonableness and effectiveness of the proposed index system and assessment method are validated.展开更多
The accurate assessment of running safety during earthquakes is of significant importance for ensuring the safety of railway lines.Currently,assessment methods based on a single index suffer from issues such as misjud...The accurate assessment of running safety during earthquakes is of significant importance for ensuring the safety of railway lines.Currently,assessment methods based on a single index suffer from issues such as misjudgment of operational safety and difficulty in evaluating operational margin,making them unsuitable for assessing train safety during earthquakes.Therefore,in order to propose an effective evaluation method for the running safety of trains during earthquakes,this study employs three indexes,namely lateral displacement of the wheel–rail contact point,wheel unloading rate,and wheel lift,to describe the lateral and vertical contact states between the wheel and rail.The corresponding evolution characteristics of the wheel–rail contact states are determined,and the derailment forms under different frequency components of seismic motion are identified through dynamic numerical simulations of the train–track coupled system under sine excitation.The variations in the wheel–rail contact states during the transition from a safe state to the critical state of derailment are analyzed,thereby constructing the evolutionary path of train derailment and seismic derailment risk domain.Lastly,the wheel–rail contact and derailment states under seismic conditions are analyzed,thus verifying the effectiveness of the evaluation method for assessing running safety under earthquakes proposed in this study.The results indicate that the assessment method based on the derailment risk domain accurately and comprehensively reflects the wheel–rail contact states under seismic conditions.It successfully determines the forms of train derailment,the risk levels of derailment,and the evolutionary paths of derailment risk.展开更多
In the realm of subway shield tunnel operations,the impact of tunnel settlement on the operational performance of subway vehicles is a crucial concern.This study introduces an advanced analytical model to investigate ...In the realm of subway shield tunnel operations,the impact of tunnel settlement on the operational performance of subway vehicles is a crucial concern.This study introduces an advanced analytical model to investigate rail geometric deformations caused by settlement within a vehicle-track-tunnel coupled system.The model integrates the geometric deformations of the track,attributed to settlement,as track irregularities.A novel“cyclic model”algorithm was employed to enhance computational efficiency without compromising on precision,a claim that was rigorously validated.The model’s capability extends to analyzing the time-history responses of vehicles traversing settlement-affected areas.The research primarily focuses on how settlement wavelength,amplitude,and vehicle speed influence operational performance.Key findings indicate that an increase in settlement wavelength can improve vehicle performance,whereas a rise in amplitude can degrade it.The study also establishes settlement thresholds,based on vehicle operation comfort and safety.These insights are pivotal for maintaining and enhancing the safety and efficiency of subway systems,providing a valuable framework for urban infrastructure management and long-term maintenance strategies in metropolitan transit systems.展开更多
The governmental electric utility and the private sector are joining hands to meet the target of electrifying all households by 2024.However,the aforementioned goal is challenged by households that are scattered in re...The governmental electric utility and the private sector are joining hands to meet the target of electrifying all households by 2024.However,the aforementioned goal is challenged by households that are scattered in remote areas.So far,Solar Home Systems(SHS)have mostly been applied to increase electricity access in rural areas.SHSs have continuous constraints to meet electricity demands and cannot run income-generating activities.The current research presents the feasibility study of electrifying Remera village with the smart microgrid as a case study.The renewable energy resources available in Remera are the key sources of electricity in that village.The generation capacity is estimated based on the load profile.The microgrid configurations are simulated with HOMER,and the genetic algorithm is used to analyze the optimum cost.By analyzing the impact of operation and maintenance costs,the results show that the absence of subsidies increases the levelized cost of electricity(COE)five times greater than the electricity price from the public utility.The microgrid made up of PV,diesel generator,and batteries proved to be the most viable solution and ensured continuous power supply to customers.By considering the subsidies,COE reaches 0.186$/kWh,a competitive price with electricity from public utilities in Rwanda.展开更多
基金sponsored by National Natural Science Foundation of China (81800703 and 81970701)Beijing Nova Program (Z201100006820117 and 20220484181)+7 种基金Beijing Municipal Natural Science Foundation (7184252 and 7214258)the Fundamental Research Funds for the Central Universitiesthe Fundamental Research Funds for the Central Universities (BMU2021MX013)Peking University Clinical Scientist Training Program (BMU2023PYJH022)China Endocrine and Metabolism Young Scientific Talent Research Project (2022-N-02-01)Peking University Medicine Seed Fund for Interdisciplinary ResearchChina Diabetes Young Scientific Talent Research ProjectBethune-Merck Diabetes Research Fund of Bethune Charitable Foundation (G2018030)。
文摘Exercise training is critical for the early prevention and treatment of obesity and diabetes mellitus.However,the mechanism with gut microbiota and fecal metabolites underlying the effects of voluntary wheel running on high-fat diet induced abnormal glucose metabolism has not been fully elaborated.C57BL/6 male mice were randomly assigned to 4 groups according to diets(fed with normal chow diet or high-fat diet)and running paradigm(housed in static cage or with voluntary running wheel).An integrative 16S rDNA sequencing and metabolites profiling was synchronously performed to characterize the effects of voluntary wheel running on gut microbiota and metabolites.It showed that voluntary wheel running prevented the detrimental effects of high-fat feeding on glucose metabolism 16S rDNA sequencing showed remarkable changes in Rikenella and Marvinbryantia genera.Metabolic profiling indicated multiple altered metabolites,which were enriched in secondary bile acid biosynthesis signaling.In conclusion,our study indicated that voluntary wheel running significantly improved glucose metabolism and counteracted the deleterious effects of high-fat feeding on body weight and glucose intolerance.We further found that voluntary wheel running could integratively program gut microbiota composition and fecal metabolites changes,and may regulate muricholic acid metabolism and secondary bile acid biosynthesis in high-fat fed mice.
基金provided by the National Natural Science Foundation of China(Grants No.12272238 and No.11932013)the"Outstanding Young Scholar"Program of Shanghai Municipalthe"Dawn"Program of Shanghai Education Commission(Grant No.19SG47)。
文摘Background:Foot kinematics,such as excessive eversion and malalignment of the hindfoot,are believed to be associated with running-related injuries.The maj ority of studies to date show that different foot strike patterns influence these specific foot and ankle kinematics.However,technical deficiencies in traditional motion capture approaches limit knowledge of in vivo joint kinematics with respect to rearfoot and forefoot strike patterns(RFS and FFS,respectively).This study uses a high-speed dual fluoroscopic imaging system(DFIS)to determine the effects of different foot strike patterns on 3D in vivo tibiotalar and subtalar joints kinematics.Methods:Fifteen healthy male recreational runners underwent foot computed tomography scanning for the construction of 3-dimensional models.A high-speed DFIS(100 Hz)was used to collect 6 degrees of freedom kinematics for participants’tibiotalar and subtalar joints when they adopted RFS and FFS in barefoot condition.Results:Compared with RFS,FFS exhibited greater internal rotation at 0%-20%of the stance phase in the tibiotalar joint.The peak internal rotation angle of the tibiotalar joint under FFS was greater than under RFS(p<0.001,Cohen’s d=0.92).RFS showed more dorsiflexion at 0%-20%of the stance phase in the tibiotalar joint than FFS.RFS also presented a larger anterior translation(p<0.001,Cohen’s d=1.28)in the subtalar joint at i nitial contact than FFS.Conclusion:Running with acute barefoot FFS increases the internal rotation of the tibiotalar joint in the early stance.The use of high-speed DFIS to quantify the movement of the tibiotalar and subtalar joint was critical to revealing the effects of RF S and FFS during running.
基金Project(2023YFB4302500)supported by the National Key R&D Program of ChinaProject(52078485)supported by the National Natural Science Foundation of ChinaProjects(2021-Major-16,2021-Special-08)supported by the Science and Technology Research and Development Program Project of China Railway Group Limited。
文摘Running safety assessment and tracking irregularity parametric sensitivity analysis of high-speed maglev train-bridge system are of great concern,especially need perfect refinement models in which all properties can be well characterized based on various stochastic excitations.A three-dimensional refined spatial random vibration analysis model of high-speed maglev train-bridge coupled system is established in this paper,in which multi-source uncertainty excitation can be considered simultaneously,and the probability density evolution method(PDEM)is adopted to reveal the system-specific uncertainty dynamic characteristic.The motion equation of the maglev vehicle model is composed of multi-rigid bodies with a total 210-degrees of freedom for each vehicle,and a refined electromagnetic force-air gap model is used to account for the interaction and coupling effect between the moving train and track beam bridges,which are directly established by using finite element method.The model is proven to be applicable by comparing with Monte Carlo simulation.By applying the proposed stochastic framework to the high maglev line,the random dynamic responses of maglev vehicles running on the bridges are studied for running safety and stability assessment.Moreover,the effects of track irregularity wavelength range under different amplitude and running speeds on the coupled system are investigated.The results show that the augmentation of train speed will move backward the sensitive wavelength interval,and track irregularity amplitude influences the response remarkably in the sensitive interval.
基金the Science,Research and Innovation Promotion Funding(TSRI)(Grant No.FRB660012/0168)managed under Rajamangala University of Technology Thanyaburi(FRB66E0646O.4).
文摘This study presents the design of a modified attributed control chart based on a double sampling(DS)np chart applied in combination with generalized multiple dependent state(GMDS)sampling to monitor the mean life of the product based on the time truncated life test employing theWeibull distribution.The control chart developed supports the examination of the mean lifespan variation for a particular product in the process of manufacturing.Three control limit levels are used:the warning control limit,inner control limit,and outer control limit.Together,they enhance the capability for variation detection.A genetic algorithm can be used for optimization during the in-control process,whereby the optimal parameters can be established for the proposed control chart.The control chart performance is assessed using the average run length,while the influence of the model parameters upon the control chart solution is assessed via sensitivity analysis based on an orthogonal experimental design withmultiple linear regression.A comparative study was conducted based on the out-of-control average run length,in which the developed control chart offered greater sensitivity in the detection of process shifts while making use of smaller samples on average than is the case for existing control charts.Finally,to exhibit the utility of the developed control chart,this paper presents its application using simulated data with parameters drawn from the real set of data.
文摘In order to convey complete meanings,there is a phenomenon in Chinese of using multiple running sentences.Xu Jingning(2023,p.66)states,“In communication,a complete expression of meaning often requires more than one clause,which is common in human languages.”Domestic research on running sentences includes discussions on defining the concept and structural features of running sentences,sentence properties,sentence pattern classifications and their criteria,as well as issues related to translating running sentences into English.This article primarily focuses on scholarly research into the English translation of running sentences in China,highlighting recent achievements and identifying existing issues in the study of running sentence translation.However,by reviewing literature on the translation of running sentences,it is found that current research in the academic community on non-core running sentences is limited.Therefore,this paper proposes relevant strategies to address this issue.
文摘Time flies like an arrow,and time lost never returns.In the past few years of my junior high school life,what impressed me most was running.At first,I didn’t like sports.I thought I was supposed to spend more time on school work than on exercise.But gradually,I found that running was not only good for my health,but also helped me relieve stress.When I opened my arms and stretched my legs on the playground,I was like a deer running in the field,which made me get a sense of belonging.
基金the National Natural Science Foundation of China(Grant Nos.12275179 and 11875042)the Natural Science Foundation of Shanghai(Grant No.21ZR1443900)。
文摘Exposed to the natural light-dark cycle,24 h rhythms exist in behavioral and physiological processes of living beings.Interestingly,under constant darkness or constant light,living beings can maintain a robust endogenous rhythm with a free running period(FRP)close to 24 h.In mammals,the circadian rhythm is coordinated by a master clock located in the suprachiasmatic nucleus(SCN)of the brain,which is composed of about twenty thousand self-oscillating neurons.These SCN neurons form a heterogenous network to output a robust rhythm.Thus far,the exact network topology of the SCN neurons is unknown.In this article,we examine the effect of the SCN network structure on the FRP when exposed to constant light by a Poincare model.Four typical network structures are considered,including a nearest-neighbor coupled network,a Newman-Watts small world network,an Erd¨os-Renyi random network and a Barabasi-Albert(BA)scale free network.The results show that the FRP is longest in the BA network,because the BA network is characterized by the most heterogeneous structure among these four types of networks.These findings are not affected by the average node degree of the SCN network or the value of relaxation rate of the SCN neuronal oscillators.Our findings contribute to the understanding of how the network structure of the SCN neurons influences the FRP.
基金Supported by Aetrex,Inc.414 Alfred Avenue Teaneck,NJ 07666,USA。
文摘BACKGROUND Running is a hugely popular sport.Unfortunately,running-related injury(RRI)rates are high,particularly amongst amateur and recreational runners.Finding ways to reduce RRI rates and maximise comfort and performance for runners is important.Evidence regarding whether orthotics can successfully improve these parameters is limited and contradicting.Further research is required to provide runners with clearer guidance on the usefulness of orthotics.AIM To investigate the effect of Aetrex Orthotics on comfort,speed and RRI rates during recreational running.METHODS One hundred and six recreational runners were recruited on a voluntary basis via running clubs and social media pages and randomised into either the intervention or control group.Participants in the intervention group ran with Aetrex L700 Speed Orthotics inserted in their usual running shoes,whilst participants in the control group ran in their usual running shoes with no orthotics.The study ran for an 8-wk period.Participants provided data relating to running comfort,distance,and time during weeks 3-6.Participants provided data relating to any RRIs they sustained during all 8 wks.Running distance and time were used to calculate running speed in miles per hour(mph).For each outcome variable,95%confidence intervals and P values were calculated to assess the statistical significance between the groups.For comfort and speed data,univariate multi-level analysis was performed,and for outcome variables with significant between group differences,multi-level multivariate analysis was performed to evaluate any confounding effects of gender and age.RESULTS Ninety-four participants were included in the final analysis(drop-out rate=11%).Comfort and speed from 940 runs and 978 injury data reports were analysed.Participants who ran with orthotics reported,on average,speeds 0.30 mph faster(P=0.20)and comfort scores 1.27 points higher(P≤0.001)than participants who ran with no orthotics.They were also 2.22 times less likely to sustain an injury(P=0.08)than participants who ran with no orthotics.However,findings were only significant for comfort and not for speed or injury rates.Age and gender were found to be significant predictors of comfort.However,the improvements in comfort reported by participants who ran with orthotics were still significant after adjusting for age and gender.CONCLUSION This study found orthotics to improve comfort and speed and prevent RRIs whilst running.However,these findings were only statistically significant for comfort.
基金supported by the National Major Science Project of China for Global Change Research (No. 2015CB953900)the National Natural Science Foundation of China (No. 41330960)
文摘This study used the synthetic running correlation coefficient calculation method to calculate the running correlation coefficients between the daily sea ice concentration(SIC) and sea surface air temperature(SSAT) in the Beaufort-Chukchi-East Siberian-Laptev Sea(BCEL Sea), Kara Sea and southern Chukchi Sea, with an aim to understand and measure the seasonally occurring changes in the Arctic climate system. The similarities and differences among these three regions were also discussed. There are periods in spring and autumn when the changes in SIC and SSAT are not synchronized, which is a result of the seasonally occurring variation in the climate system. These periods are referred to as transition periods. Spring transition periods can be found in all three regions, and the start and end dates of these periods have advancing trends. The multiyear average duration of the spring transition periods in the BCEL Sea, Kara Sea and southern Chukchi Sea is 74 days, 57 days and 34 days, respectively. In autumn, transition periods exist in only the southern Chukchi Sea, with a multiyear average duration of only 16 days. Moreover, in the Kara Sea, positive correlation events can be found in some years, which are caused by weather time scale processes.
文摘A newly proposed competent population-based optimization algorithm called RUN,which uses the principle of slope variations calculated by applying the Runge Kutta method as the key search mechanism,has gained wider interest in solving optimization problems.However,in high-dimensional problems,the search capabilities,convergence speed,and runtime of RUN deteriorate.This work aims at filling this gap by proposing an improved variant of the RUN algorithm called the Adaptive-RUN.Population size plays a vital role in both runtime efficiency and optimization effectiveness of metaheuristic algorithms.Unlike the original RUN where population size is fixed throughout the search process,Adaptive-RUN automatically adjusts population size according to two population size adaptation techniques,which are linear staircase reduction and iterative halving,during the search process to achieve a good balance between exploration and exploitation characteristics.In addition,the proposed methodology employs an adaptive search step size technique to determine a better solution in the early stages of evolution to improve the solution quality,fitness,and convergence speed of the original RUN.Adaptive-RUN performance is analyzed over 23 IEEE CEC-2017 benchmark functions for two cases,where the first one applies linear staircase reduction with adaptive search step size(LSRUN),and the second one applies iterative halving with adaptive search step size(HRUN),with the original RUN.To promote green computing,the carbon footprint metric is included in the performance evaluation in addition to runtime and fitness.Simulation results based on the Friedman andWilcoxon tests revealed that Adaptive-RUN can produce high-quality solutions with lower runtime and carbon footprint values as compared to the original RUN and three recent metaheuristics.Therefore,with its higher computation efficiency,Adaptive-RUN is a much more favorable choice as compared to RUN in time stringent applications.
基金Thailand Science ResearchInnovation Fund,and King Mongkut's University of Technology North Bangkok Contract No.KMUTNB-FF-65-45.
文摘The Extended Exponentially Weighted Moving Average(extended EWMA)control chart is one of the control charts and can be used to quickly detect a small shift.The performance of control charts can be evaluated with the average run length(ARL).Due to the deriving explicit formulas for the ARL on a two-sided extended EWMA control chart for trend autoregressive or trend AR(p)model has not been reported previously.The aim of this study is to derive the explicit formulas for the ARL on a two-sided extended EWMA con-trol chart for the trend AR(p)model as well as the trend AR(1)and trend AR(2)models with exponential white noise.The analytical solution accuracy was obtained with the extended EWMA control chart and was compared to the numer-ical integral equation(NIE)method.The results show that the ARL obtained by the explicit formula and the NIE method is hardly different,but the explicit for-mula can help decrease the computational(CPU)time.Furthermore,this is also expanded to comparative performance with the Exponentially Weighted Moving Average(EWMA)control chart.The performance of the extended EWMA control chart is better than the EWMA control chart for all situations,both the trend AR(1)and trend AR(2)models.Finally,the analytical solution of ARL is applied to real-world data in the healthfield,such as COVID-19 data in the United Kingdom and Sweden,to demonstrate the efficacy of the proposed method.
文摘The upgrading of diesel oil to produce ethylene rich cracking feedstock is an important and promising technical route to reduce the ratio of diesel to gasoline. In the present work, a hydrocracking catalyst suitable for selective hydrocracking of straight run diesel oil to produce high-quality ethylene cracking feedstock at low cost was developed, by optimizing the composition of catalyst support materials, using amorphous silicon aluminum and aluminum oxide with high mesopore content as the main support, and modified Y zeolite with excellent aromatic ring opening selectivity as the acidic component. The catalyst has in-depth characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, N<sub>2</sub>-low temperature adsorption-desorption, NH<sub>3</sub>-temperature-programmed desorption, and IR techniques. And its catalytic cracking straight run diesel oil performance was evaluated. The results show that the prepared catalyst has high polycyclic aromatic hydrocarbon ring opening cracking selectivity. However, alkanes retained in diesel distillates can achieve the goal of producing more ethylene cracking feedstocks with low BMCI value under low and moderate pressure conditions. This work may shed significant technical insight for oil refining transformation.
文摘In this note, we first derive an exponential generating function of the alternating run polynomials. We then deduce an explicit formula of the alternating run polynomials in terms of the partial Bell polynomials.
基金supported by the National Natural Science Foundation of China(Grant No.32101541)the National Key R&D Program of China(Grant No.2022YFD2200400).
文摘Global climate change has increased concerns regarding biodiversity loss.However,many key conservation issues still required further research,including demographic history,deleterious mutation load,adaptive evolution,and putative introgression.Here we generated the first chromosome-level genome of the endangered Chinese hazelnut,Corylus chinensis,and compared the genomic signatures with its sympatric widespread C.kwechowensis-C yunnanensis complex.We found large genome rearrangements across all Corylus species and identified species-specific expanded gene families that may be involved in adaptation.Population genomics revealed that both C.chinensis and the C.kwechowensis-C.yunnanensis complex had diverged into two genetic lineages,forming a consistent pattern of southwestern-northern differentiation.Population size of the narrow southwestern lineages of both species have decreased continuously since the late Miocene,whereas the widespread northern lineages have remained stable(C.chinensis) or have even recovered from population bottlenecks(C.kwechowensis-C.yunnanensis complex) during the Quaternary.Compared with C.kwechowensis-C. yunnanensis complex,C.chinensis showed significantly lower genomic diversity and higher inbreeding level.However,C.chinensis carried significantly fewer deleterious mutations than C.kwechowensis-C. yunnanensis complex,as more effective purging selection reduced the accumulation of homozygous variants.We also detected signals of positive selection and adaptive introgression in different lineages,which facilitated the accumulation of favorable variants and formation of local adaptation.Hence,both types of selection and exogenous introgression could have mitigated inbreeding and facilitated survival and persistence of C.chinensis.Overall,our study provides critical insights into lineage differentiation,local adaptation,and the potential for future recovery of endangered trees.
基金Projects(52022113,52278546)supported by the National Natural Science Foundation of ChinaProject(2020EEEVL0403)supported by the China Earthquake Administration。
文摘Sudden earthquakes pose a threat to the running safety of trains on high-speed railway bridges,and the stiffness of piers is one of the factors affecting the dynamic response of train-track-bridge system.In this paper,a experiment of a train running on a high-speed railway bridge is performed based on a dynamic experiment system,and the corresponding numerical model is established.The reliability of the numerical model is verified by experiments.Then,the experiment and numerical data are analyzed to reveal the pier height effects on the running safety of trains on bridges.The results show that when the pier height changes,the frequency of the bridge below the 30 m pier height changes greater;the increase of pier height causes the transverse fundamental frequency of the bridge close to that of the train,and the shaking angle and lateral displacement of the train are the largest for bridge with 50 m pier,which increases the risk of derailment;with the pier height increases from 8 m to 50 m,the derailment coefficient obtained by numerical simulations increases by 75% on average,and the spectral intensity obtained by experiments increases by 120% on average,two indicators exhibit logarithmic variation.
基金supported by the NIH (R01NS103481, R01NS111776, and R01NS131489)Indiana Department of Health (ISDH58180)(all to WW)。
文摘Spinal cord injury necessitates effective rehabilitation strategies, with exercise therapies showing promise in promoting recovery. This study investigated the impact of rehabilitation exercise on functional recovery and morphological changes following thoracic contusive spinal cord injury. After a 7-day recovery period after spinal cord injury, mice were assigned to either a trained group(10 weeks of voluntary running wheel or forced treadmill exercise) or an untrained group. Bi-weekly assessments revealed that the exercise-trained group, particularly the voluntary wheel exercise subgroup, displayed significantly improved locomotor recovery, more plasticity of dopaminergic and serotonin modulation compared with the untrained group. Additionally, exercise interventions led to gait pattern restoration and enhanced transcranial magnetic motor-evoked potentials. Despite consistent injury areas across groups, exercise training promoted terminal innervation of descending axons. In summary, voluntary wheel exercise shows promise for enhancing outcomes after thoracic contusive spinal cord injury, emphasizing the role of exercise modality in promoting recovery and morphological changes in spinal cord injuries. Our findings will influence future strategies for rehabilitation exercises, restoring functional movement after spinal cord injury.
基金The financial support from the Program for Science and Technology of Henan Province of China(Grant No.242102210148)Henan Center for Outstanding Overseas Scientists(Grant No.GZS2022011)Songshan Laboratory Pre-Research Project(Grant No.YYJC032022022).
文摘Intelligent electronic devices(IEDs)are interconnected via communication networks and play pivotal roles in transmitting grid-related operational data and executing control instructions.In the context of the heightened security challenges within smart grids,IEDs pose significant risks due to inherent hardware and software vulner-abilities,as well as the openness and vulnerability of communication protocols.Smart grid security,distinct from traditional internet security,mainly relies on monitoring network security events at the platform layer,lacking an effective assessment mechanism for IEDs.Hence,we incorporate considerations for both cyber-attacks and physical faults,presenting security assessment indicators and methods specifically tailored for IEDs.Initially,we outline the security monitoring technology for IEDs,considering the necessary data sources for their security assessment.Subsequently,we classify IEDs and establish a comprehensive security monitoring index system,incorporating factors such as running states,network traffic,and abnormal behaviors.This index system contains 18 indicators in 3 categories.Additionally,we elucidate quantitative methods for various indicators and propose a hybrid security assessment method known as GRCW-hybrid,combining grey relational analysis(GRA),analytic hierarchy process(AHP),and entropy weight method(EWM).According to the proposed assessment method,the security risk level of IEDs can be graded into 6 levels,namely 0,1,2,3,4,and 5.The higher the level,the greater the security risk.Finally,we assess and simulate 15 scenarios in 3 categories,which are based on monitoring indicators and real-world situations encountered by IEDs.The results show that calculated security risk level based on the proposed assessment method are consistent with actual simulation.Thus,the reasonableness and effectiveness of the proposed index system and assessment method are validated.
基金supported by the National Key R&D Program“Transportation Infrastructure”“Reveal The List and Take Command”project(2022YFB2603301)National Natural Science Foundation of China(No.52078498)+3 种基金Natural Science Foundation of Hunan Province of China(No.2022JJ30745)Frontier cross research project of Central South University(No.2023QYJC006)Hunan Provincial Science and Technology Promotion Talent Project(No.2020TJ-Q19)Science and Technology Research and Development Program Project of China railway group limited(Major Special Project,No.2021-Special-04-2)。
文摘The accurate assessment of running safety during earthquakes is of significant importance for ensuring the safety of railway lines.Currently,assessment methods based on a single index suffer from issues such as misjudgment of operational safety and difficulty in evaluating operational margin,making them unsuitable for assessing train safety during earthquakes.Therefore,in order to propose an effective evaluation method for the running safety of trains during earthquakes,this study employs three indexes,namely lateral displacement of the wheel–rail contact point,wheel unloading rate,and wheel lift,to describe the lateral and vertical contact states between the wheel and rail.The corresponding evolution characteristics of the wheel–rail contact states are determined,and the derailment forms under different frequency components of seismic motion are identified through dynamic numerical simulations of the train–track coupled system under sine excitation.The variations in the wheel–rail contact states during the transition from a safe state to the critical state of derailment are analyzed,thereby constructing the evolutionary path of train derailment and seismic derailment risk domain.Lastly,the wheel–rail contact and derailment states under seismic conditions are analyzed,thus verifying the effectiveness of the evaluation method for assessing running safety under earthquakes proposed in this study.The results indicate that the assessment method based on the derailment risk domain accurately and comprehensively reflects the wheel–rail contact states under seismic conditions.It successfully determines the forms of train derailment,the risk levels of derailment,and the evolutionary paths of derailment risk.
基金funded by the Scientific Research Startup Foundation of Fujian University of Technology (GY-Z21067 and GY-Z21026).
文摘In the realm of subway shield tunnel operations,the impact of tunnel settlement on the operational performance of subway vehicles is a crucial concern.This study introduces an advanced analytical model to investigate rail geometric deformations caused by settlement within a vehicle-track-tunnel coupled system.The model integrates the geometric deformations of the track,attributed to settlement,as track irregularities.A novel“cyclic model”algorithm was employed to enhance computational efficiency without compromising on precision,a claim that was rigorously validated.The model’s capability extends to analyzing the time-history responses of vehicles traversing settlement-affected areas.The research primarily focuses on how settlement wavelength,amplitude,and vehicle speed influence operational performance.Key findings indicate that an increase in settlement wavelength can improve vehicle performance,whereas a rise in amplitude can degrade it.The study also establishes settlement thresholds,based on vehicle operation comfort and safety.These insights are pivotal for maintaining and enhancing the safety and efficiency of subway systems,providing a valuable framework for urban infrastructure management and long-term maintenance strategies in metropolitan transit systems.
文摘The governmental electric utility and the private sector are joining hands to meet the target of electrifying all households by 2024.However,the aforementioned goal is challenged by households that are scattered in remote areas.So far,Solar Home Systems(SHS)have mostly been applied to increase electricity access in rural areas.SHSs have continuous constraints to meet electricity demands and cannot run income-generating activities.The current research presents the feasibility study of electrifying Remera village with the smart microgrid as a case study.The renewable energy resources available in Remera are the key sources of electricity in that village.The generation capacity is estimated based on the load profile.The microgrid configurations are simulated with HOMER,and the genetic algorithm is used to analyze the optimum cost.By analyzing the impact of operation and maintenance costs,the results show that the absence of subsidies increases the levelized cost of electricity(COE)five times greater than the electricity price from the public utility.The microgrid made up of PV,diesel generator,and batteries proved to be the most viable solution and ensured continuous power supply to customers.By considering the subsidies,COE reaches 0.186$/kWh,a competitive price with electricity from public utilities in Rwanda.